BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 11340598)

  • 1. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends.
    Cui X; Lee VA; Raphael Y; Wiler JA; Hetke JF; Anderson DJ; Martin DC
    J Biomed Mater Res; 2001 Aug; 56(2):261-72. PubMed ID: 11340598
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of neural probes with conducting polymer poly(hydroxymethylated-3,4- ethylenedioxythiophene) and its biocompatibility.
    Xiao Y; Martin DC; Cui X; Shenai M
    Appl Biochem Biotechnol; 2006 Feb; 128(2):117-30. PubMed ID: 16484721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo studies of polypyrrole/peptide coated neural probes.
    Cui X; Wiler J; Dzaman M; Altschuler RA; Martin DC
    Biomaterials; 2003 Feb; 24(5):777-87. PubMed ID: 12485796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conducting polymer coated neural recording electrodes.
    Harris AR; Morgan SJ; Chen J; Kapsa RM; Wallace GG; Paolini AG
    J Neural Eng; 2013 Feb; 10(1):016004. PubMed ID: 23234724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypyrrole doped with 2 peptide sequences from laminin.
    Stauffer WR; Cui XT
    Biomaterials; 2006 Apr; 27(11):2405-13. PubMed ID: 16343612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells.
    Ghane-Motlagh B; Javanbakht T; Shoghi F; Wilkinson KJ; Martel R; Sawan M
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():642-650. PubMed ID: 27524064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations.
    Sasso L; Heiskanen A; Diazzi F; Dimaki M; Castillo-León J; Vergani M; Landini E; Raiteri R; Ferrari G; Carminati M; Sampietro M; Svendsen WE; Emnéus J
    Analyst; 2013 Jul; 138(13):3651-9. PubMed ID: 23628978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
    Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT
    Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conducting polymers grown in hydrogel scaffolds coated on neural prosthetic devices.
    Kim DH; Abidian M; Martin DC
    J Biomed Mater Res A; 2004 Dec; 71(4):577-85. PubMed ID: 15514937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and theoretical characterization of implantable neural microelectrodes modified with conducting polymer nanotubes.
    Abidian MR; Martin DC
    Biomaterials; 2008 Mar; 29(9):1273-83. PubMed ID: 18093644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode.
    Wadhwa R; Lagenaur CF; Cui XT
    J Control Release; 2006 Feb; 110(3):531-41. PubMed ID: 16360955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ordered surfactant-templated poly(3,4-ethylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes.
    Yang J; Kim DH; Hendricks JL; Leach M; Northey R; Martin DC
    Acta Biomater; 2005 Jan; 1(1):125-36. PubMed ID: 16701786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conducting polymer 3D microelectrodes.
    Sasso L; Vazquez P; Vedarethinam I; Castillo-León J; Emnéus J; Svendsen WE
    Sensors (Basel); 2010; 10(12):10986-1000. PubMed ID: 22163508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of nano-tentacle polypyrrole with pseudo-molecular template for ATP incorporation.
    Xiao Y; Che J; Li CM; Sun CQ; Chua YT; Lee VS; Luong JH
    J Biomed Mater Res A; 2007 Mar; 80(4):925-31. PubMed ID: 17072847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent attachment of proteins to functionalized polypyrrole-coated metallic surfaces for improved biocompatibility.
    Khan W; Kapoor M; Kumar N
    Acta Biomater; 2007 Jul; 3(4):541-9. PubMed ID: 17383247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic Fe2O3-polystyrene/PPy core/shell particles: bioreactivity and self-assembly.
    Mangeney C; Fertani M; Bousalem S; Zhicai M; Ammar S; Herbst F; Beaunier P; Elaissari A; Chehimi MM
    Langmuir; 2007 Oct; 23(22):10940-9. PubMed ID: 17900197
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vivo Neural Recording and Electrochemical Performance of Microelectrode Arrays Modified by Rough-Surfaced AuPt Alloy Nanoparticles with Nanoporosity.
    Zhao Z; Gong R; Zheng L; Wang J
    Sensors (Basel); 2016 Nov; 16(11):. PubMed ID: 27827893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.