BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 11340598)

  • 21. Carboxy-endcapped conductive polypyrrole: biomimetic conducting polymer for cell scaffolds and electrodes.
    Lee JW; Serna F; Schmidt CE
    Langmuir; 2006 Nov; 22(24):9816-9. PubMed ID: 17106966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing the interface in silk-polypyrrole composites through chemical modification of silk fibroin.
    Romero IS; Schurr ML; Lally JV; Kotlik MZ; Murphy AR
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):553-64. PubMed ID: 23320759
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanostructured polypyrrole-coated anode for sun-powered microbial fuel cells.
    Zou Y; Pisciotta J; Baskakov IV
    Bioelectrochemistry; 2010 Aug; 79(1):50-6. PubMed ID: 19969509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Versatile biomimetic conductive polypyrrole films doped with hyaluronic acid of different molecular weights.
    Kim S; Jang Y; Jang M; Lim A; Hardy JG; Park HS; Lee JY
    Acta Biomater; 2018 Oct; 80():258-268. PubMed ID: 30266636
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical and in vitro bioactivity of polypyrrole/ceramic nanocomposite coatings on 316L SS bio-implants.
    Madhan Kumar A; Nagarajan S; Ramakrishna S; Sudhagar P; Kang YS; Kim H; Gasem ZM; Rajendran N
    Mater Sci Eng C Mater Biol Appl; 2014 Oct; 43():76-85. PubMed ID: 25175190
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes.
    Leprince L; Dogimont A; Magnin D; Demoustier-Champagne S
    J Mater Sci Mater Med; 2010 Mar; 21(3):925-30. PubMed ID: 20143134
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Overoxidized polypyrrole-coated carbon fiber microelectrodes for dopamine measurements with fast-scan cyclic voltammetry.
    Pihel K; Walker QD; Wightman RM
    Anal Chem; 1996 Jul; 68(13):2084-9. PubMed ID: 9027223
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation.
    Luo X; Weaver CL; Zhou DD; Greenberg R; Cui XT
    Biomaterials; 2011 Aug; 32(24):5551-7. PubMed ID: 21601278
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyrrole-hyaluronic acid conjugates for decreasing cell binding to metals and conducting polymers.
    Lee JY; Schmidt CE
    Acta Biomater; 2010 Nov; 6(11):4396-404. PubMed ID: 20558330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Facile and controllable electrochemical fabrication of cell-adhesive polypyrrole electrodes using pyrrole-RGD peptides.
    Jang LK; Kim S; Seo J; Young Lee J
    Biofabrication; 2017 Nov; 9(4):045007. PubMed ID: 29019465
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene oxide doped conducting polymer nanocomposite film for electrode-tissue interface.
    Tian HC; Liu JQ; Wei DX; Kang XY; Zhang C; Du JC; Yang B; Chen X; Zhu HY; Nuli YN; Yang CS
    Biomaterials; 2014 Feb; 35(7):2120-9. PubMed ID: 24333027
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex.
    Kim DH; Wiler JA; Anderson DJ; Kipke DR; Martin DC
    Acta Biomater; 2010 Jan; 6(1):57-62. PubMed ID: 19651250
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymerization and surface analysis of electrically-conductive polypyrrole on surface-activated polyester fabrics for biomedical applications.
    Tessier D; Dao LH; Zhang Z; King MW; Guidoin R
    J Biomater Sci Polym Ed; 2000; 11(1):87-99. PubMed ID: 10680610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotube composite coating of neural microelectrodes preferentially improves the multiunit signal-to-noise ratio.
    Baranauskas G; Maggiolini E; Castagnola E; Ansaldo A; Mazzoni A; Angotzi GN; Vato A; Ricci D; Panzeri S; Fadiga L
    J Neural Eng; 2011 Dec; 8(6):066013. PubMed ID: 22064890
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Magnesium-based biodegradable microelectrodes for neural recording.
    Zhang C; Wen TH; Razak KA; Lin J; Xu C; Seo C; Villafana E; Jimenez H; Liu H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110614. PubMed ID: 32204062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces.
    Kleber C; Bruns M; Lienkamp K; Rühe J; Asplund M
    Acta Biomater; 2017 Aug; 58():365-375. PubMed ID: 28578108
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine.
    Gao YS; Xu JK; Lu LM; Wu LP; Zhang KX; Nie T; Zhu XF; Wu Y
    Biosens Bioelectron; 2014 Dec; 62():261-7. PubMed ID: 25022509
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving the Biocompatibility and Functionality of Neural Interface Devices with Silica Nanoparticles.
    Shi D; Narayanan S; Woeppel K; Cui XT
    Acc Chem Res; 2024 Jun; 57(12):1684-1695. PubMed ID: 38814586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel neural interface for implant electrodes: improving electroactivity of polypyrrole through MWNT incorporation.
    Green RA; Williams CM; Lovell NH; Poole-Warren LA
    J Mater Sci Mater Med; 2008 Apr; 19(4):1625-9. PubMed ID: 18214647
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.