These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11341007)

  • 1. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes.
    Harvey FE; Sibray SS
    Ground Water; 2001; 39(3):408-21. PubMed ID: 11341007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of NADP archive samples to determine the isotope composition of precipitation: characterizing the meteoric input function for use in ground water studies.
    Harvey FE
    Ground Water; 2001; 39(3):380-90. PubMed ID: 11341004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal variability of ground water recharge in central Australia: a tracer approach.
    Harrington GA; Cook PG; Herczeg AL
    Ground Water; 2002; 40(5):518-27. PubMed ID: 12236265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geochemical evolution, residence times and recharge conditions of the multilayered Tubarão aquifer system (State of São Paulo - Brazil) as indicated by hydrochemical, stable isotope and
    Ezaki S; Gastmans D; Iritani MA; Santos VD; Stradioto MR
    Isotopes Environ Health Stud; 2020; 56(5-6):495-512. PubMed ID: 32716671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using 14C and 3H to delineate a recharge 'window' into the Perth Basin aquifers, North Gnangara groundwater system, Western Australia.
    Meredith K; Cendón DI; Pigois JP; Hollins S; Jacobsen G
    Sci Total Environ; 2012 Jan; 414():456-69. PubMed ID: 22104381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of multiple geochemical indicators, including the stable isotopes of water, to differentiate water quality evolution in a region influenced by various agricultural practices and domestic wastewater treatment and disposal.
    Butler TW
    Sci Total Environ; 2007 Dec; 388(1-3):149-67. PubMed ID: 17904619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground water recharge and flow characterization using multiple isotopes.
    Chowdhury AH; Uliana M; Wade S
    Ground Water; 2008; 46(3):426-36. PubMed ID: 18384592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18).
    Horst A; Mahlknecht J; Merkel BJ
    Isotopes Environ Health Stud; 2007 Dec; 43(4):323-38. PubMed ID: 18041622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing sources of ground water recharge by using delta2H and delta18O.
    Blasch KW; Bryson JR
    Ground Water; 2007; 45(3):294-308. PubMed ID: 17470119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isotopes and sustainability of ground water resources, North China Plain.
    Zongyu C; Zhenlong N; Zhaoji Z; Jixiang Q; Yunju N
    Ground Water; 2005; 43(4):485-93. PubMed ID: 16029174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing ground water input to base flow using sulfate (S, O) isotopes.
    Gu A; Gray F; Eastoe CJ; Norman LM; Duarte O; Long A
    Ground Water; 2008; 46(3):502-9. PubMed ID: 18331327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ground water budget analysis and cross-formational leakage in an arid basin.
    Hutchison WR; Hibbs BJ
    Ground Water; 2008; 46(3):384-95. PubMed ID: 18384598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of recharge and flowpaths in a limestone thermomineral aquifer system using environmental isotope tracers (Central Portugal).
    Marques JM; Eggenkamp HG; Graca H; Carreira PM; Jose Matias M; Mayer B; Nunes D
    Isotopes Environ Health Stud; 2010 Jun; 46(2):156-65. PubMed ID: 20582785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers.
    Hibbs BJ; Darling BK
    Ground Water; 2005; 43(5):750-63. PubMed ID: 16149972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground water dependence of endangered ecosystems: Nebraska's eastern saline wetlands.
    Harvey FE; Ayers JF; Gosselin DC
    Ground Water; 2007; 45(6):736-52. PubMed ID: 17973752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A first estimate of ground water ages for the deep aquifer of the Kathmandu Basin, Nepal, using the radioisotope chlorine-36.
    Cresswell RG; Bauld J; Jacobson G; Khadka MS; Jha MG; Shrestha MP; Regmi S
    Ground Water; 2001; 39(3):449-57. PubMed ID: 11341011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ground water/surface water interactions in Lake Naivasha, Kenya, using delta 18O, delta D, and 3H/3He age-dating.
    Ojiambo BS; Poreda RJ; Lyons WB
    Ground Water; 2001; 39(4):526-33. PubMed ID: 11447853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental isotopes as indicators for ground water recharge to fractured granite.
    Ofterdinger US; Balderer W; Loew S; Renard P
    Ground Water; 2004; 42(6-7):868-79. PubMed ID: 15584300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using hydrochemical data and modelling to enhance the knowledge of groundwater flow and quality in an alluvial aquifer of Zagreb, Croatia.
    Marković T; Brkić Ž; Larva O
    Sci Total Environ; 2013 Aug; 458-460():508-16. PubMed ID: 23707721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Implications of ground water chemistry and flow patterns for earthquake studies.
    Guangcai W; Zuochen Z; Min W; Cravotta CA; Chenglong L
    Ground Water; 2005; 43(4):478-84. PubMed ID: 16029173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.