BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11341009)

  • 1. Arsenic in glacial drift aquifers and the implication for drinking water--lower Illinois River Basin.
    Warner KL
    Ground Water; 2001; 39(3):433-42. PubMed ID: 11341009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glacial sediment causing regional-scale elevated arsenic in drinking water.
    Erickson ML; Barnes RJ
    Ground Water; 2005; 43(6):796-805. PubMed ID: 16324001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Well characteristics influencing arsenic concentrations in ground water.
    Erickson ML; Barnes RJ
    Water Res; 2005 Oct; 39(16):4029-39. PubMed ID: 16135378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications.
    Ayotte JD; Montgomery DL; Flanagan SM; Robinson KW
    Environ Sci Technol; 2003 May; 37(10):2075-83. PubMed ID: 12785510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of groundwater recharge and well characteristics on dissolved arsenic concentrations in southeastern Michigan groundwater.
    Meliker JR; Slotnick MJ; Avruskin GA; Haack SK; Nriagu JO
    Environ Geochem Health; 2009 Feb; 31(1):147-57. PubMed ID: 18496757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic in glacial aquifers: sources and geochemical controls.
    Kelly WR; Holm TR; Wilson SD; Roadcap GS
    Ground Water; 2005; 43(4):500-10. PubMed ID: 16029176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shallow hydrostratigraphy in an arsenic affected region of Bengal Basin: implication for targeting safe aquifers for drinking water supply.
    Biswas A; Bhattacharya P; Mukherjee A; Nath B; Alexanderson H; Kundu AK; Chatterjee D; Jacks G
    Sci Total Environ; 2014 Jul; 485-486():12-22. PubMed ID: 24704952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hazard Ranking Method for Populations Exposed to Arsenic in Private Water Supplies: Relation to Bedrock Geology.
    Crabbe H; Fletcher T; Close R; Watts MJ; Ander EL; Smedley PL; Verlander NQ; Gregory M; Middleton DRS; Polya DA; Studden M; Leonardi GS
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29194429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pollutant sources in an arsenic-affected multilayer aquifer in the Po Plain of Italy: Implications for drinking-water supply.
    Rotiroti M; McArthur J; Fumagalli L; Stefania GA; Sacchi E; Bonomi T
    Sci Total Environ; 2017 Feb; 578():502-512. PubMed ID: 27836337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenic concentrations after drinking water well installation: Time-varying effects on arsenic mobilization.
    Erickson ML; Malenda HF; Berquist EC; Ayotte JD
    Sci Total Environ; 2019 Aug; 678():681-691. PubMed ID: 31078859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The source of naturally occurring arsenic in a coastal sand aquifer of eastern Australia.
    O'Shea B; Jankowski J; Sammut J
    Sci Total Environ; 2007 Jul; 379(2-3):151-66. PubMed ID: 17184824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the probability of arsenic in groundwater in New England as a tool for exposure assessment.
    Ayotte JD; Nolan BT; Nuckols JR; Cantor KP; Robinson GR; Baris D; Hayes L; Karagas M; Bress W; Silverman DT; Lubin JH
    Environ Sci Technol; 2006 Jun; 40(11):3578-85. PubMed ID: 16786697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delineating depth to bedrock beneath shallow unconfined aquifers: a gravity transect across the Palmer River Basin.
    Bohidar RN; Sullivan JP; Hermance JF
    Ground Water; 2001; 39(5):729-36. PubMed ID: 11554251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic exposure in US public and domestic drinking water supplies: a comparative risk assessment.
    Kumar A; Adak P; Gurian PL; Lockwood JR
    J Expo Sci Environ Epidemiol; 2010 May; 20(3):245-54. PubMed ID: 19401722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance Assessments of a Novel Well Design for Reducing Exposure to Bedrock-Derived Arsenic.
    Winston RB; Ayotte JD
    Ground Water; 2018 Sep; 56(5):762-769. PubMed ID: 28952163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrostratigraphic modeling of a complex, glacial-drift aquifer system for importation into MODFLOW.
    Herzog BL; Larson DR; Abert CC; Wilson SD; Roadcap GS
    Ground Water; 2003; 41(1):57-65. PubMed ID: 12533076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic contamination of drinking water in Ireland: A spatial analysis of occurrence and potential risk.
    McGrory ER; Brown C; Bargary N; Williams NH; Mannix A; Zhang C; Henry T; Daly E; Nicholas S; Petrunic BM; Lee M; Morrison L
    Sci Total Environ; 2017 Feb; 579():1863-1875. PubMed ID: 27932216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.