BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 11341334)

  • 1. Infrared microscopic imaging of bone: spatial distribution of CO3(2-).
    Ou-Yang H; Paschalis EP; Mayo WE; Boskey AL; Mendelsohn R
    J Bone Miner Res; 2001 May; 16(5):893-900. PubMed ID: 11341334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].
    Liao JG; Li YQ; Duan XZ; Liu Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Nov; 34(11):3011-4. PubMed ID: 25752048
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ examination of the time-course for secondary mineralization of Haversian bone using synchrotron Fourier transform infrared microspectroscopy.
    Fuchs RK; Allen MR; Ruppel ME; Diab T; Phipps RJ; Miller LM; Burr DB
    Matrix Biol; 2008 Jan; 27(1):34-41. PubMed ID: 17884405
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infrared microspectroscopic imaging of biomineralized tissues using a mercury-cadmium-telluride focal-plane array detector.
    Marcott C; Reeder RC; Paschalis EP; Tatakis DN; Boskey AL; Mendelsohn R
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):109-15. PubMed ID: 9551643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman and Fourier Transform Infrared (FT-IR) Mineral to Matrix Ratios Correlate with Physical Chemical Properties of Model Compounds and Native Bone Tissue.
    Taylor EA; Lloyd AA; Salazar-Lara C; Donnelly E
    Appl Spectrosc; 2017 Oct; 71(10):2404-2410. PubMed ID: 28485618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals.
    Pleshko N; Boskey A; Mendelsohn R
    Biophys J; 1991 Oct; 60(4):786-93. PubMed ID: 1660314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone.
    Boskey AL; Spevak L; Paschalis E; Doty SB; McKee MD
    Calcif Tissue Int; 2002 Aug; 71(2):145-54. PubMed ID: 12073157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlations between X-ray diffraction and infrared data.
    Gadaleta SJ; Paschalis EP; Betts F; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 1996 Jan; 58(1):9-16. PubMed ID: 8825233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy.
    Miller LM; Carlson CS; Carr GL; Chance MR
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):117-27. PubMed ID: 9551644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. F--CO3(2-)-interaction in IR spectra of fluoridated CO3-apatites.
    Okazaki M
    Calcif Tissue Int; 1983; 35(1):78-81. PubMed ID: 6839192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the proportion of organic material in bone on thermal decomposition of bone mineral: an investigation of a variety of bones from different species using thermogravimetric analysis coupled to mass spectrometry, high-temperature X-ray diffraction, and Fourier transform infrared spectroscopy.
    Mkukuma LD; Skakle JM; Gibson IR; Imrie CT; Aspden RM; Hukins DW
    Calcif Tissue Int; 2004 Oct; 75(4):321-8. PubMed ID: 15549647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging.
    Rey C; Renugopalakrishnan V; Collins B; Glimcher MJ
    Calcif Tissue Int; 1991 Oct; 49(4):251-8. PubMed ID: 1760769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fourier transform infrared imaging spectroscopy (FT-IRIS) of mineralization in bisphosphonate-treated oim/oim mice.
    Camacho NP; Carroll P; Raggio CL
    Calcif Tissue Int; 2003 May; 72(5):604-9. PubMed ID: 12574874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy.
    Aparicio S; Doty SB; Camacho NP; Paschalis EP; Spevak L; Mendelsohn R; Boskey AL
    Calcif Tissue Int; 2002 May; 70(5):422-9. PubMed ID: 12055658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A micro-Raman spectroscopic study of hydrazine-treated human dental calculus.
    Tsuda H; Jongebloed WL; Stokroos I; Arends J
    Scanning Microsc; 1996; 10(4):1015-23; discussion 1023-4. PubMed ID: 9854853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fourier transform infrared imaging of human hair with a high spatial resolution without the use of a synchrotron.
    Chan KL; Kazarian SG; Mavraki A; Williams DR
    Appl Spectrosc; 2005 Feb; 59(2):149-55. PubMed ID: 15720754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fourier transform infrared imaging of bone.
    Paschalis EP
    Methods Mol Biol; 2012; 816():517-25. PubMed ID: 22130948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.
    Chan KL; Kazarian SG
    Appl Spectrosc; 2008 Oct; 62(10):1095-101. PubMed ID: 18926018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-Raman and FTIR studies of synthetic and natural apatites.
    Antonakos A; Liarokapis E; Leventouri T
    Biomaterials; 2007 Jul; 28(19):3043-54. PubMed ID: 17382382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.