These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 11341587)
1. Landing strategies in honeybees, and possible applications to autonomous airborne vehicles. Srinivasan MV; Zhang S; Chahl JS Biol Bull; 2001 Apr; 200(2):216-21. PubMed ID: 11341587 [TBL] [Abstract][Full Text] [Related]
2. How honeybees make grazing landings on flat surfaces. Srinivasan MV; Zhang SW; Chahl JS; Barth E; Venkatesh S Biol Cybern; 2000 Sep; 83(3):171-83. PubMed ID: 11007294 [TBL] [Abstract][Full Text] [Related]
3. Visual control of honeybee flight. Srinivasan MV; Zhang SW EXS; 1997; 84():95-113. PubMed ID: 9415991 [TBL] [Abstract][Full Text] [Related]
4. Visual motor computations in insects. Srinivasan MV; Zhang S Annu Rev Neurosci; 2004; 27():679-96. PubMed ID: 15217347 [TBL] [Abstract][Full Text] [Related]
5. A universal strategy for visually guided landing. Baird E; Boeddeker N; Ibbotson MR; Srinivasan MV Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18686-91. PubMed ID: 24167269 [TBL] [Abstract][Full Text] [Related]
6. Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Srinivasan MV Physiol Rev; 2011 Apr; 91(2):413-60. PubMed ID: 21527730 [TBL] [Abstract][Full Text] [Related]
8. Honeybees change their height to restore their optic flow. Portelli G; Ruffier F; Franceschini N J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Apr; 196(4):307-13. PubMed ID: 20217419 [TBL] [Abstract][Full Text] [Related]
9. The moment before touchdown: landing manoeuvres of the honeybee Apis mellifera. Evangelista C; Kraft P; Dacke M; Reinhard J; Srinivasan MV J Exp Biol; 2010 Jan; 213(2):262-70. PubMed ID: 20038660 [TBL] [Abstract][Full Text] [Related]
10. A visual equalization strategy for locomotor control: of honeybees, robots, and humans. Duchon AP; Warren WH Psychol Sci; 2002 May; 13(3):272-8. PubMed ID: 12009050 [TBL] [Abstract][Full Text] [Related]
11. Object Recognition in Flight: How Do Bees Distinguish between 3D Shapes? Werner A; Stürzl W; Zanker J PLoS One; 2016; 11(2):e0147106. PubMed ID: 26886006 [TBL] [Abstract][Full Text] [Related]
12. Accelerated landings in stingless bees are triggered by visual threshold cues. Tichit P; Alves-Dos-Santos I; Dacke M; Baird E Biol Lett; 2020 Aug; 16(8):20200437. PubMed ID: 32842893 [TBL] [Abstract][Full Text] [Related]
13. Neural basis of forward flight control and landing in honeybees. Ibbotson MR; Hung YS; Meffin H; Boeddeker N; Srinivasan MV Sci Rep; 2017 Nov; 7(1):14591. PubMed ID: 29109404 [TBL] [Abstract][Full Text] [Related]
15. Visual control of navigation in insects and its relevance for robotics. Srinivasan MV Curr Opin Neurobiol; 2011 Aug; 21(4):535-43. PubMed ID: 21689925 [TBL] [Abstract][Full Text] [Related]
16. Vision, perception, navigation and 'cognition' in honeybees and applications to aerial robotics. Srinivasan MV Biochem Biophys Res Commun; 2021 Jul; 564():4-17. PubMed ID: 33220922 [TBL] [Abstract][Full Text] [Related]
17. Visual gaze control during peering flight manoeuvres in honeybees. Boeddeker N; Hemmi JM Proc Biol Sci; 2010 Apr; 277(1685):1209-17. PubMed ID: 20007175 [TBL] [Abstract][Full Text] [Related]
18. The effect of optic flow cues on honeybee flight control in wind. Baird E; Boeddeker N; Srinivasan MV Proc Biol Sci; 2021 Jan; 288(1943):20203051. PubMed ID: 33468001 [TBL] [Abstract][Full Text] [Related]
19. A bee in the corridor: centering and wall-following. Serres JR; Masson GP; Ruffier F; Franceschini N Naturwissenschaften; 2008 Dec; 95(12):1181-7. PubMed ID: 18813898 [TBL] [Abstract][Full Text] [Related]