BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11341764)

  • 1. Gap junction-dependent increases in smooth muscle cAMP underpin the EDHF phenomenon in rabbit arteries.
    Taylor HJ; Chaytor AT; Edwards DH; Griffith TM
    Biochem Biophys Res Commun; 2001 May; 283(3):583-9. PubMed ID: 11341764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic AMP mediates EDHF-type relaxations of rabbit jugular vein.
    Griffith TM; Taylor HJ
    Biochem Biophys Res Commun; 1999 Sep; 263(1):52-7. PubMed ID: 10486252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mediation of EDHF-induced reduction of smooth muscle [Ca(2+)](i) and arteriolar dilation by K(+) channels, 5,6-EET, and gap junctions.
    Ungvari Z; Koller A
    Microcirculation; 2001 Aug; 8(4):265-74. PubMed ID: 11528534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap junction-dependent and -independent EDHF-type relaxations may involve smooth muscle cAMP accumulation.
    Chaytor AT; Taylor HJ; Griffith TM
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1548-55. PubMed ID: 11893592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide-independent relaxations to acetylcholine and A23187 involve different routes of heterocellular communication. Role of Gap junctions and phospholipase A2.
    Hutcheson IR; Chaytor AT; Evans WH; Griffith TM
    Circ Res; 1999 Jan 8-22; 84(1):53-63. PubMed ID: 9915774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying the impaired EDHF-type relaxation response in mesenteric arteries from Otsuka Long-Evans Tokushima Fatty (OLETF) rats.
    Matsumoto T; Kobayashi T; Kamata K
    Eur J Pharmacol; 2006 May; 538(1-3):132-40. PubMed ID: 16678154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developmental changes in myoendothelial gap junction mediated vasodilator activity in the rat saphenous artery.
    Sandow SL; Goto K; Rummery NM; Hill CE
    J Physiol; 2004 May; 556(Pt 3):875-86. PubMed ID: 14766938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The obligatory link: role of gap junctional communication in endothelium-dependent smooth muscle hyperpolarization.
    Griffith TM; Chaytor AT; Edwards DH
    Pharmacol Res; 2004 Jun; 49(6):551-64. PubMed ID: 15026033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cAMP facilitates EDHF-type relaxations in conduit arteries by enhancing electrotonic conduction via gap junctions.
    Griffith TM; Chaytor AT; Taylor HJ; Giddings BD; Edwards DH
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):6392-7. PubMed ID: 11972050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of acetylcholine-induced EDHF response by elevated glucose in rat mesenteric artery.
    Ozkan MH; Uma S
    Life Sci; 2005 Nov; 78(1):14-21. PubMed ID: 16125203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Central role of heterocellular gap junctional communication in endothelium-dependent relaxations of rabbit arteries.
    Chaytor AT; Evans WH; Griffith TM
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):561-73. PubMed ID: 9508817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The endothelium-derived hyperpolarising factor (EDHF) in isolated bovine choroidal arteries.
    Delaey C; Boussery K; Breyne J; Vanheel B; Van de Voorde J
    Exp Eye Res; 2007 Jun; 84(6):1067-73. PubMed ID: 17418119
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of the gap junctional component of endothelium-dependent relaxations in rabbit iliac artery by 18-alpha glycyrrhetinic acid.
    Taylor HJ; Chaytor AT; Evans WH; Griffith TM
    Br J Pharmacol; 1998 Sep; 125(1):1-3. PubMed ID: 9776336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct hyperpolarizing and relaxant roles for gap junctions and endothelium-derived H2O2 in NO-independent relaxations of rabbit arteries.
    Chaytor AT; Edwards DH; Bakker LM; Griffith TM
    Proc Natl Acad Sci U S A; 2003 Dec; 100(25):15212-7. PubMed ID: 14645719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of heterocellular Gap junctional communication in endothelium-dependent smooth muscle hyperpolarization: inhibition by a connexin-mimetic peptide.
    Dora KA; Martin PE; Chaytor AT; Evans WH; Garland CJ; Griffith TM
    Biochem Biophys Res Commun; 1999 Jan; 254(1):27-31. PubMed ID: 9920727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of voltage-dependent potassium channels and myo-endothelial gap junctions in 4-aminopyridine-induced inhibition of acetylcholine relaxation in rat carotid artery.
    Gupta PK; Subramani J; Leo MD; Sikarwar AS; Parida S; Prakash VR; Mishra SK
    Eur J Pharmacol; 2008 Sep; 591(1-3):171-6. PubMed ID: 18577383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented endothelium-derived hyperpolarizing factor-mediated relaxations attenuate endothelial dysfunction in femoral and mesenteric, but not in carotid arteries from type I diabetic rats.
    Shi Y; Ku DD; Man RY; Vanhoutte PM
    J Pharmacol Exp Ther; 2006 Jul; 318(1):276-81. PubMed ID: 16565165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attenuated store-operated Ca2+ entry underpins the dual inhibition of nitric oxide and EDHF-type relaxations by iodinated contrast media.
    Fernandez-Rodriguez S; Edwards DH; Newton B; Griffith TM
    Cardiovasc Res; 2009 Dec; 84(3):470-8. PubMed ID: 19592569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial potassium channels, endothelium-dependent hyperpolarization and the regulation of vascular tone in health and disease.
    Coleman HA; Tare M; Parkington HC
    Clin Exp Pharmacol Physiol; 2004 Sep; 31(9):641-9. PubMed ID: 15479173
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for heterocellular coupling and EETs in dilation of rat cremaster arteries.
    McSherry IN; Sandow SL; Campbell WB; Falck JR; Hill MA; Dora KA
    Microcirculation; 2006 Mar; 13(2):119-30. PubMed ID: 16459325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.