These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 11341764)

  • 21. Relative contributions of NO and gap junctional communication to endothelium-dependent relaxations of rabbit resistance arteries vary with vessel size.
    Berman RS; Martin PE; Evans WH; Griffith TM
    Microvasc Res; 2002 Jan; 63(1):115-28. PubMed ID: 11749078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pharmacological characteristics of endothelium-derived hyperpolarizing factor-mediated relaxation of small mesenteric arteries from db/db mice.
    Pannirselvam M; Ding H; Anderson TJ; Triggle CR
    Eur J Pharmacol; 2006 Dec; 551(1-3):98-107. PubMed ID: 17027963
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of gap junctions in endothelium-derived hyperpolarizing factor-mediated vasodilatation in rat renal artery.
    Karagiannis J; Rand M; Li CG
    Acta Pharmacol Sin; 2004 Aug; 25(8):1031-7. PubMed ID: 15301736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Endothelium-derived hyperpolarizing factor and potassium use different mechanisms to induce relaxation of human subcutaneous resistance arteries.
    McIntyre CA; Buckley CH; Jones GC; Sandeep TC; Andrews RC; Elliott AI; Gray GA; Williams BC; McKnight JA; Walker BR; Hadoke PW
    Br J Pharmacol; 2001 Jul; 133(6):902-8. PubMed ID: 11454664
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of glycyrrhetinic acid isoforms and carbenoxolone as inhibitors of EDHF-type relaxations mediated via gap junctions.
    Chaytor AT; Marsh WL; Hutcheson IR; Griffith TM
    Endothelium; 2000; 7(4):265-78. PubMed ID: 11201524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Myoendothelial gap junctions may provide the pathway for EDHF in mouse mesenteric artery.
    Dora KA; Sandow SL; Gallagher NT; Takano H; Rummery NM; Hill CE; Garland CJ
    J Vasc Res; 2003; 40(5):480-90. PubMed ID: 14583659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distinct endothelium-derived hyperpolarizing factors emerge in vitro and in vivo and are mediated in part via connexin 40-dependent myoendothelial coupling.
    Boettcher M; de Wit C
    Hypertension; 2011 Apr; 57(4):802-8. PubMed ID: 21357279
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dihydropyridines inhibit acetylcholine-induced hyperpolarization in cochlear artery via blockade of intermediate-conductance calcium-activated potassium channels.
    Jiang ZG; Shi XR; Guan BC; Zhao H; Yang YQ
    J Pharmacol Exp Ther; 2007 Feb; 320(2):544-51. PubMed ID: 17082310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Replacement of connexin 43 by connexin 32 in a knock-in mice model attenuates aortic endothelium-derived hyperpolarizing factor-mediated relaxation.
    López D; Rodríguez-Sinovas A; Agulló E; García A; Sánchez JA; García-Dorado D
    Exp Physiol; 2009 Oct; 94(10):1088-97. PubMed ID: 19617266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EDHF: an update.
    Félétou M; Vanhoutte PM
    Clin Sci (Lond); 2009 Jul; 117(4):139-55. PubMed ID: 19601928
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of ATP-sensitive K+ channels in relaxation of penile resistance arteries.
    Ruiz Rubio JL; Hernández M; Rivera de los Arcos L; Benedito S; Recio P; García P; García-Sacristán A; Prieto D
    Urology; 2004 Apr; 63(4):800-5. PubMed ID: 15072915
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alteration in endothelial function and modulation by treatment with pioglitazone in rabbit renal artery from short-term hypercholesterolemia.
    Taniguchi J; Honda H; Shibusawa Y; Iwata T; Notoya Y
    Vascul Pharmacol; 2005 Jun; 43(1):47-55. PubMed ID: 15953770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EDHF mediates the relaxation of stretched canine femoral arteries to acetylcholine.
    Woodley N; Meunier RL; Barclay JK
    Can J Physiol Pharmacol; 2001 Nov; 79(11):924-31. PubMed ID: 11760094
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increases in endothelial Ca(2+) activate K(Ca) channels and elicit EDHF-type arteriolar dilation via gap junctions.
    Ungvari Z; Csiszar A; Koller A
    Am J Physiol Heart Circ Physiol; 2002 May; 282(5):H1760-7. PubMed ID: 11959641
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen peroxide potentiates the EDHF phenomenon by promoting endothelial Ca2+ mobilization.
    Edwards DH; Li Y; Griffith TM
    Arterioscler Thromb Vasc Biol; 2008 Oct; 28(10):1774-81. PubMed ID: 18669883
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bradykinin-induced relaxation of coronary microarteries: S-nitrosothiols as EDHF?
    Batenburg WW; Popp R; Fleming I; de Vries R; Garrelds IM; Saxena PR; Danser AH
    Br J Pharmacol; 2004 May; 142(1):125-35. PubMed ID: 15066907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous nitric oxide attenuates beta-adrenoceptor-mediated relaxation in rat aorta.
    Kang KB; van der Zypp A; Majewski H
    Clin Exp Pharmacol Physiol; 2007; 34(1-2):95-101. PubMed ID: 17201742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses.
    de Wit C; Griffith TM
    Pflugers Arch; 2010 May; 459(6):897-914. PubMed ID: 20379740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of gap-junction-dependent arterial relaxation by ascorbic acid.
    Edwards DH; Chaytor AT; Bakker LM; Griffith TM
    J Vasc Res; 2007; 44(5):410-22. PubMed ID: 17587861
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gap junctional communication underpins EDHF-type relaxations evoked by ACh in the rat hepatic artery.
    Chaytor AT; Martin PE; Edwards DH; Griffith TM
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2441-50. PubMed ID: 11356596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.