BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11341960)

  • 21. Knockout of the regulatory site of 3-ketoacyl-ACP synthase III enhances short- and medium-chain acyl-ACP synthesis.
    Abbadi A; Brummel M; Spener F
    Plant J; 2000 Oct; 24(1):1-9. PubMed ID: 11029699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A jojoba beta-Ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants.
    Lassner MW; Lardizabal K; Metz JG
    Plant Cell; 1996 Feb; 8(2):281-92. PubMed ID: 8742713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-transcribed genes for long chain polyunsaturated fatty acid biosynthesis in the protozoon Perkinsus marinus include a plant-like FAE1 3-ketoacyl coenzyme A synthase.
    Venegas-Calerón M; Beaudoin F; Sayanova O; Napier JA
    J Biol Chem; 2007 Feb; 282(5):2996-3003. PubMed ID: 17092943
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conversion of a beta-ketoacyl synthase to a malonyl decarboxylase by replacement of the active-site cysteine with glutamine.
    Witkowski A; Joshi AK; Lindqvist Y; Smith S
    Biochemistry; 1999 Sep; 38(36):11643-50. PubMed ID: 10512619
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Arabidopsis 3-ketoacyl-coenzyme a synthase9 is involved in the synthesis of tetracosanoic acids as precursors of cuticular waxes, suberins, sphingolipids, and phospholipids.
    Kim J; Jung JH; Lee SB; Go YS; Kim HJ; Cahoon R; Markham JE; Cahoon EB; Suh MC
    Plant Physiol; 2013 Jun; 162(2):567-80. PubMed ID: 23585652
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of a KCS-like KASII from Jessenia bataua that elongates saturated and monounsaturated stearic acids in Arabidopsis thaliana.
    Teh OK; Ramli US
    Mol Biotechnol; 2011 Jun; 48(2):97-108. PubMed ID: 21113689
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme.
    Millar AA; Kunst L
    Plant J; 1997 Jul; 12(1):121-31. PubMed ID: 9263455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acyl-CoA elongase expression during seed development in Brassica napus.
    Puyaubert J; Garbay B; Costaglioli P; Dieryck W; Roscoe TJ; Renard M; Cassagne C; Lessire R
    Biochim Biophys Acta; 2001 Sep; 1533(2):141-52. PubMed ID: 11566451
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L.
    Han J; Lühs W; Sonntag K; Zähringer U; Borchardt DS; Wolter FP; Heinz E; Frentzen M
    Plant Mol Biol; 2001 May; 46(2):229-39. PubMed ID: 11442062
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Very long chain fatty acid synthesis in sunflower kernels.
    Salas JJ; Martínez-Force E; Garcés R
    J Agric Food Chem; 2005 Apr; 53(7):2710-6. PubMed ID: 15796615
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaining insight into the role of serine 282 in B. napus FAE1 condensing enzyme.
    Katavic V; Barton DL; Giblin EM; Reed DW; Kumar A; Taylor DC
    FEBS Lett; 2004 Mar; 562(1-3):118-24. PubMed ID: 15044011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural modeling and site-directed mutagenesis of the actinorhodin beta-ketoacyl-acyl carrier protein synthase.
    He M; Varoglu M; Sherman DH
    J Bacteriol; 2000 May; 182(9):2619-23. PubMed ID: 10762267
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatty acid elongase is required for shoot development in rice.
    Ito Y; Kimura F; Hirakata K; Tsuda K; Takasugi T; Eiguchi M; Nakagawa K; Kurata N
    Plant J; 2011 May; 66(4):680-8. PubMed ID: 21309865
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases.
    Tresch S; Heilmann M; Christiansen N; Looser R; Grossmann K
    Phytochemistry; 2012 Apr; 76():162-71. PubMed ID: 22284369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use.
    Taylor DC; Francis T; Guo Y; Brost JM; Katavic V; Mietkiewska E; Michael Giblin E; Lozinsky S; Hoffman T
    Plant Biotechnol J; 2009 Dec; 7(9):925-38. PubMed ID: 19843251
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of fatty acid components of meadowfoam oil in somatic soybean embryos.
    Cahoon EB; Marillia EF; Stecca KL; Hall SE; Taylor DC; Kinney AJ
    Plant Physiol; 2000 Sep; 124(1):243-51. PubMed ID: 10982439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene.
    Wu G; Wu Y; Xiao L; Li X; Lu C
    Theor Appl Genet; 2008 Feb; 116(4):491-9. PubMed ID: 18075728
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of FATTY ACID ELONGATION1 expression and production in Brassica oleracea and Capsella rubella.
    Li D; Lei Z; Xue J; Zhou G; Hang Y; Sun X
    Planta; 2017 Oct; 246(4):763-778. PubMed ID: 28674753
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The 1.8 A crystal structure and active-site architecture of beta-ketoacyl-acyl carrier protein synthase III (FabH) from escherichia coli.
    Davies C; Heath RJ; White SW; Rock CO
    Structure; 2000 Feb; 8(2):185-95. PubMed ID: 10673437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme.
    Abbadi A; Brummel M; Schütt BS; Slabaugh MB; Schuch R; Spener F
    Biochem J; 2000 Jan; 345 Pt 1(Pt 1):153-60. PubMed ID: 10600651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.