These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
72 related articles for article (PubMed ID: 11343391)
1. Apoptotic cells in a peripheral blood smear in the context of EBV infection. Lesesve JF; Troussard X Am J Hematol; 2001 Jun; 67(2):148-9. PubMed ID: 11343391 [No Abstract] [Full Text] [Related]
2. Center for Disease Control (CDC) flow cytometry panel for human immunodeficiency virus infection allows recognition of infectious mononucleosis caused by Epstein-Barr virus or cytomegalovirus. Zidovec Lepej S; Vince A; Rakusic S; Dakovic Rode O; Sonicki Z; Jeren T Croat Med J; 2003 Dec; 44(6):702-6. PubMed ID: 14652882 [TBL] [Abstract][Full Text] [Related]
3. Diagnosis of atypical cases of infectious mononucleosis. Taga K; Taga H; Tosato G Clin Infect Dis; 2001 Jul; 33(1):83-8. PubMed ID: 11389499 [TBL] [Abstract][Full Text] [Related]
4. Peripheral blood lymphocyte apoptosis: a clue to the diagnosis of acute infectious mononucleosis. Fisher MS; Guerra CG; Hickman JR; Hensley RE; Doe RH; Dunn CD; Hall RB Arch Pathol Lab Med; 1996 Oct; 120(10):951-5. PubMed ID: 12046607 [TBL] [Abstract][Full Text] [Related]
5. Clinical evaluation of a quantitative real time polymerase chain reaction assay for diagnosis of primary Epstein-Barr virus infection in children. Pitetti RD; Laus S; Wadowsky RM Pediatr Infect Dis J; 2003 Aug; 22(8):736-9. PubMed ID: 12913777 [TBL] [Abstract][Full Text] [Related]
6. Assessment of automated DNA extraction coupled with real-time PCR for measuring Epstein-Barr virus load in whole blood, peripheral mononuclear cells and plasma. Fafi-Kremer S; Brengel-Pesce K; Barguès G; Bourgeat MJ; Genoulaz O; Seigneurin JM; Morand P J Clin Virol; 2004 Jun; 30(2):157-64. PubMed ID: 15125872 [TBL] [Abstract][Full Text] [Related]
7. Detection of EBV infection in different etiologic groups of patients. Trzcińska A; Litwińska B; Kańtoch M Acta Microbiol Pol; 2001; 50(3-4):275-80. PubMed ID: 11930995 [TBL] [Abstract][Full Text] [Related]
8. Detailed kinetics of EBV-specific CD4+ and CD8+ T cells during primary EBV infection in a kidney transplant patient. Piriou ER; van Dort K; Weel JF; Bemelman FJ; Gamadia LE; van Oers MH; van Baarle D Clin Immunol; 2006 Apr; 119(1):16-20. PubMed ID: 16386961 [TBL] [Abstract][Full Text] [Related]
9. Biology of Epstein-Barr virus during infectious mononucleosis. Sitki-Green DL; Edwards RH; Covington MM; Raab-Traub N J Infect Dis; 2004 Feb; 189(3):483-92. PubMed ID: 14745706 [TBL] [Abstract][Full Text] [Related]
10. Quantitative analysis of Epstein-Barr virus (EBV)-specific CD8+ T cells in patients with chronic active EBV infection. Sugaya N; Kimura H; Hara S; Hoshino Y; Kojima S; Morishima T; Tsurumi T; Kuzushima K J Infect Dis; 2004 Sep; 190(5):985-8. PubMed ID: 15295706 [TBL] [Abstract][Full Text] [Related]
11. Regulatory T cell activity in primary and persistent Epstein-Barr virus infection. Wingate PJ; McAulay KA; Anthony IC; Crawford DH J Med Virol; 2009 May; 81(5):870-7. PubMed ID: 19319950 [TBL] [Abstract][Full Text] [Related]
12. Clonal expansion of multiphenotypic Epstein-Barr virus-infected lymphocytes in chronic active Epstein-Barr virus infection. Endo R; Yoshioka M; Ebihara T; Ishiguro N; Kikuta H; Kobayashi K Med Hypotheses; 2004; 63(4):582-7. PubMed ID: 15325000 [TBL] [Abstract][Full Text] [Related]
14. A new animal model for primary and persistent Epstein-Barr virus infection: human EBV-infected rabbit characteristics determined using sequential imaging and pathological analysis. Takashima K; Ohashi M; Kitamura Y; Ando K; Nagashima K; Sugihara H; Okuno K; Sairenji T; Hayashi K J Med Virol; 2008 Mar; 80(3):455-66. PubMed ID: 18205213 [TBL] [Abstract][Full Text] [Related]
15. Association of virus infected-T cell in severe hepatitis caused by primary Epstein-Barr virus infection. Hara S; Hoshino Y; Naitou T; Nagano K; Iwai M; Suzuki K; Yamamoto K; Nagasaka T; Morishima T; Kimura H J Clin Virol; 2006 Mar; 35(3):250-6. PubMed ID: 16181807 [TBL] [Abstract][Full Text] [Related]
16. Immune activation suppresses initiation of lytic Epstein-Barr virus infection. Ladell K; Dorner M; Zauner L; Berger C; Zucol F; Bernasconi M; Niggli FK; Speck RF; Nadal D Cell Microbiol; 2007 Aug; 9(8):2055-69. PubMed ID: 17419714 [TBL] [Abstract][Full Text] [Related]
17. Hematologic differences in heterophile-positive and heterophile-negative infectious mononucleosis. Ventura KC; Hudnall SD Am J Hematol; 2004 Aug; 76(4):315-8. PubMed ID: 15282662 [TBL] [Abstract][Full Text] [Related]
18. Pathogenesis of chronic active Epstein-Barr virus infection: is this an infectious disease, lymphoproliferative disorder, or immunodeficiency? Kimura H Rev Med Virol; 2006; 16(4):251-61. PubMed ID: 16791843 [TBL] [Abstract][Full Text] [Related]
19. Dominant expression of interleukin-10 and transforming growth factor-beta genes in activated T-cells of chronic active Epstein-Barr virus infection. Ohga S; Nomura A; Takada H; Tanaka T; Furuno K; Takahata Y; Kinukawa N; Fukushima N; Imai S; Hara T J Med Virol; 2004 Nov; 74(3):449-58. PubMed ID: 15368517 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of Epstein-Barr virus DNA levels in serum during EBV-associated disease. Berger C; Day P; Meier G; Zingg W; Bossart W; Nadal D J Med Virol; 2001 Aug; 64(4):505-12. PubMed ID: 11468736 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]