BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

435 related articles for article (PubMed ID: 11343645)

  • 1. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism.
    Tropepe V; Hitoshi S; Sirard C; Mak TW; Rossant J; van der Kooy D
    Neuron; 2001 Apr; 30(1):65-78. PubMed ID: 11343645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand/receptor signaling threshold (LIST) model accounts for gp130-mediated embryonic stem cell self-renewal responses to LIF and HIL-6.
    Viswanathan S; Benatar T; Rose-John S; Lauffenburger DA; Zandstra PW
    Stem Cells; 2002; 20(2):119-38. PubMed ID: 11897869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Embryonic stem cells assume a primitive neural stem cell fate in the absence of extrinsic influences.
    Smukler SR; Runciman SB; Xu S; van der Kooy D
    J Cell Biol; 2006 Jan; 172(1):79-90. PubMed ID: 16390999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BMP and LIF signaling coordinately regulate lineage restriction of radial glia in the developing forebrain.
    Li H; Grumet M
    Glia; 2007 Jan; 55(1):24-35. PubMed ID: 17001659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Context-dependent neuronal differentiation and germ layer induction of Smad4-/- and Cripto-/- embryonic stem cells.
    Sonntag KC; Simantov R; Björklund L; Cooper O; Pruszak J; Kowalke F; Gilmartin J; Ding J; Hu YP; Shen MM; Isacson O
    Mol Cell Neurosci; 2005 Mar; 28(3):417-29. PubMed ID: 15737733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of radial glia-like cells from embryonic stem cells.
    Liour SS; Yu RK
    Glia; 2003 Apr; 42(2):109-17. PubMed ID: 12655595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BMPs signal alternately through a SMAD or FRAP-STAT pathway to regulate fate choice in CNS stem cells.
    Rajan P; Panchision DM; Newell LF; McKay RD
    J Cell Biol; 2003 Jun; 161(5):911-21. PubMed ID: 12796477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural differentiation of embryonic stem cells.
    O'Shea KS
    Methods Mol Biol; 2002; 198():3-14. PubMed ID: 11951633
    [No Abstract]   [Full Text] [Related]  

  • 9. Formation of neural precursor cell populations by differentiation of embryonic stem cells in vitro.
    Rathjen J; Rathjen PD
    ScientificWorldJournal; 2002 Mar; 2():690-700. PubMed ID: 12805994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3.
    Ying QL; Nichols J; Chambers I; Smith A
    Cell; 2003 Oct; 115(3):281-92. PubMed ID: 14636556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FGF dependent regulation of Zfhx1b gene expression promotes the formation of definitive neural stem cells in the mouse anterior neurectoderm.
    Dang LT; Tropepe V
    Neural Dev; 2010 May; 5():13. PubMed ID: 20459606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nestin-positive mesenchymal stem cells favour the astroglial lineage in neural progenitors and stem cells by releasing active BMP4.
    Wislet-Gendebien S; Bruyère F; Hans G; Leprince P; Moonen G; Rogister B
    BMC Neurosci; 2004 Sep; 5():33. PubMed ID: 15369599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible programming of pluripotent cell differentiation.
    Lake J; Rathjen J; Remiszewski J; Rathjen PD
    J Cell Sci; 2000 Feb; 113 ( Pt 3)():555-66. PubMed ID: 10639341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential requirements for Smad4 in TGFbeta-dependent patterning of the early mouse embryo.
    Chu GC; Dunn NR; Anderson DC; Oxburgh L; Robertson EJ
    Development; 2004 Aug; 131(15):3501-12. PubMed ID: 15215210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture.
    Ying QL; Stavridis M; Griffiths D; Li M; Smith A
    Nat Biotechnol; 2003 Feb; 21(2):183-6. PubMed ID: 12524553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developmental expression of fibroblast growth factor (FGF) receptors in neural stem cell progeny. Modulation of neuronal and glial lineages by basic FGF treatment.
    Reimers D; López-Toledano MA; Mason I; Cuevas P; Redondo C; Herranz AS; Lobo MV; Bazán E
    Neurol Res; 2001 Sep; 23(6):612-21. PubMed ID: 11547930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-step induction of neurons from mouse embryonic stem cells in serum-free media containing vitamin B12 and heparin.
    Yamazoe H; Kobori M; Murakami Y; Yano K; Satoh M; Mizuseki K; Sasai Y; Iwata H
    Cell Transplant; 2006; 15(2):135-45. PubMed ID: 16719047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary culture of neural precursors from the ovine central nervous system (CNS).
    Duittoz AH; Hevor T
    J Neurosci Methods; 2001 May; 107(1-2):131-40. PubMed ID: 11389950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic selection of sox1GFP-expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation.
    Chung S; Shin BS; Hedlund E; Pruszak J; Ferree A; Kang UJ; Isacson O; Kim KS
    J Neurochem; 2006 Jun; 97(5):1467-80. PubMed ID: 16696855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient serum-free derivation of oligodendrocyte precursors from neural stem cell-enriched cultures.
    Rao RC; Boyd J; Padmanabhan R; Chenoweth JG; McKay RD
    Stem Cells; 2009 Jan; 27(1):116-25. PubMed ID: 18403757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.