BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 11343661)

  • 1. Sleep enhances plasticity in the developing visual cortex.
    Frank MG; Issa NP; Stryker MP
    Neuron; 2001 Apr; 30(1):275-87. PubMed ID: 11343661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep-dependent plasticity requires cortical activity.
    Jha SK; Jones BE; Coleman T; Steinmetz N; Law CT; Griffin G; Hawk J; Dabbish N; Kalatsky VA; Frank MG
    J Neurosci; 2005 Oct; 25(40):9266-74. PubMed ID: 16207886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blockade of postsynaptic activity in sleep inhibits developmental plasticity in visual cortex.
    Frank MG; Jha SK; Coleman T
    Neuroreport; 2006 Sep; 17(13):1459-63. PubMed ID: 16932158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of binocular responses after brief monocular deprivation in kittens.
    Kameyama K; Hata Y; Tsumoto T
    Neuroreport; 2005 Sep; 16(13):1447-50. PubMed ID: 16110269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep-Dependent Potentiation in the Visual System Is at Odds with the Synaptic Homeostasis Hypothesis.
    Durkin J; Aton SJ
    Sleep; 2016 Jan; 39(1):155-9. PubMed ID: 26285006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between relative eye usage and ocular dominance shifts in cat visual cortex.
    Mower GD
    Brain Res Dev Brain Res; 2005 Jan; 154(1):147-51. PubMed ID: 15617764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-dependent slow-wave sleep development.
    Miyamoto H; Katagiri H; Hensch T
    Nat Neurosci; 2003 Jun; 6(6):553-4. PubMed ID: 12754515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sleep does not enhance the recovery of deprived eye responses in developing visual cortex.
    Dadvand L; Stryker MP; Frank MG
    Neuroscience; 2006 Dec; 143(3):815-26. PubMed ID: 17000056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lateral geniculate neurons projecting to primary visual cortex show ocular dominance plasticity in adult mice.
    Jaepel J; Hübener M; Bonhoeffer T; Rose T
    Nat Neurosci; 2017 Dec; 20(12):1708-1714. PubMed ID: 29184207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early retinal activity and visual circuit development.
    Del Rio T; Feller MB
    Neuron; 2006 Oct; 52(2):221-2. PubMed ID: 17046683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thick visual cortex in the early blind.
    Jiang J; Zhu W; Shi F; Liu Y; Li J; Qin W; Li K; Yu C; Jiang T
    J Neurosci; 2009 Feb; 29(7):2205-11. PubMed ID: 19228973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid extragranular plasticity in the absence of thalamocortical plasticity in the developing primary visual cortex.
    Trachtenberg JT; Trepel C; Stryker MP
    Science; 2000 Mar; 287(5460):2029-32. PubMed ID: 10720332
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transient synaptic silencing of developing striate cortex has persistent effects on visual function and plasticity.
    Caleo M; Restani L; Gianfranceschi L; Costantin L; Rossi C; Rossetto O; Montecucco C; Maffei L
    J Neurosci; 2007 Apr; 27(17):4530-40. PubMed ID: 17460066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strabismus does not prevent recovery from monocular deprivation: a challenge for simple Hebbian models of synaptic modification.
    Malach R; Van Sluyters RC
    Vis Neurosci; 1989 Sep; 3(3):267-73. PubMed ID: 2487106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wakefulness suppresses retinal wave-related neural activity in visual cortex.
    Mukherjee D; Yonk AJ; Sokoloff G; Blumberg MS
    J Neurophysiol; 2017 Aug; 118(2):1190-1197. PubMed ID: 28615335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Opponent inhibition: a developmental model of layer 4 of the neocortical circuit.
    Kayser AS; Miller KD
    Neuron; 2002 Jan; 33(1):131-42. PubMed ID: 11779486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sleep and developmental plasticity not just for kids.
    Frank MG
    Prog Brain Res; 2011; 193():221-32. PubMed ID: 21854965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.