These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 11343661)

  • 21. Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex.
    Mower GD; Caplan CJ; Christen WG; Duffy FH
    J Comp Neurol; 1985 May; 235(4):448-66. PubMed ID: 3998219
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid eye movement sleep deprivation in post-critical period, adolescent rats alters the balance between inhibitory and excitatory mechanisms in visual cortex.
    Shaffery JP; Lopez J; Bissette G; Roffwarg HP
    Neurosci Lett; 2006 Jan; 393(2-3):131-5. PubMed ID: 16236445
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unit activity in the cat visual cortex in the sleep--waking cycle.
    Mukhametov LM; Strokova IG
    Neurosci Behav Physiol; 1977; 8(2):127-32. PubMed ID: 211461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Plasticity of an aberrant geniculocortical pathway in neonatally lesioned cats.
    Kato N; Price DJ; Ferrer JM; Blakemore C
    Neuroreport; 1993 Jul; 4(7):915-8. PubMed ID: 8396462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delayed plasticity of inhibitory neurons in developing visual cortex.
    Gandhi SP; Yanagawa Y; Stryker MP
    Proc Natl Acad Sci U S A; 2008 Oct; 105(43):16797-802. PubMed ID: 18940923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical periods in the visual system: changing views for a model of experience-dependent plasticity.
    Hooks BM; Chen C
    Neuron; 2007 Oct; 56(2):312-26. PubMed ID: 17964248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuregulin-1/ErbB4 Signaling Regulates Visual Cortical Plasticity.
    Sun Y; Ikrar T; Davis MF; Gong N; Zheng X; Luo ZD; Lai C; Mei L; Holmes TC; Gandhi SP; Xu X
    Neuron; 2016 Oct; 92(1):160-173. PubMed ID: 27641496
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Astrocytes shape the plastic response of adult cortical neurons to vision loss.
    Hennes M; Lombaert N; Wahis J; Van den Haute C; Holt MG; Arckens L
    Glia; 2020 Oct; 68(10):2102-2118. PubMed ID: 32237182
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing.
    Tsanov M; Manahan-Vaughan D
    Neuroscientist; 2008 Dec; 14(6):584-97. PubMed ID: 18612086
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid eye movement sleep deprivation modifies expression of long-term potentiation in visual cortex of immature rats.
    Shaffery JP; Sinton CM; Bissette G; Roffwarg HP; Marks GA
    Neuroscience; 2002; 110(3):431-43. PubMed ID: 11906784
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellular mechanisms of visual cortical plasticity: a game of cat and mouse.
    Gordon JA
    Learn Mem; 1997; 4(3):245-61. PubMed ID: 10456067
    [No Abstract]   [Full Text] [Related]  

  • 33. Influence of hypnogenic brain areas on wakefulness- and rapid-eye-movement sleep-related neurons in the brainstem of freely moving cats.
    Mallick BN; Thankachan S; Islam F
    J Neurosci Res; 2004 Jan; 75(1):133-42. PubMed ID: 14689456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye movement potentials in the oculomotor and visual systems of the cat: a comparison of reserpine induced waves with those present during wakefulness and rapid eye movement sleep.
    Brooks DC; Gershon MD
    Brain Res; 1971 Apr; 27(2):223-39. PubMed ID: 4324033
    [No Abstract]   [Full Text] [Related]  

  • 35. Neurons of visual cortex respond to visceral stimulation during slow wave sleep.
    Pigarev IN
    Neuroscience; 1994 Oct; 62(4):1237-43. PubMed ID: 7845596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-critical period plasticity of callosal transfer to visual cortex cells of cats following early conditioning of monocular deprivation and late optic chiasm transection.
    Yinon U; Hammer A
    Brain Res; 1990 May; 516(1):84-90. PubMed ID: 2364285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development.
    Silver MA; Fagiolini M; Gillespie DC; Howe CL; Frank MG; Issa NP; Antonini A; Stryker MP
    Neuroscience; 2001; 108(4):569-85. PubMed ID: 11738495
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex.
    Yang Y; Fischer QS; Zhang Y; Baumgärtel K; Mansuy IM; Daw NW
    Nat Neurosci; 2005 Jun; 8(6):791-6. PubMed ID: 15880107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complete restoration of visual cortical responses is possible late in development. Focus on "recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity".
    Chalupa LM
    J Neurophysiol; 2004 Oct; 92(4):1969-70. PubMed ID: 15381738
    [No Abstract]   [Full Text] [Related]  

  • 40. Auditory activation of "visual" cortical areas in the blind mole rat (Spalax ehrenbergi).
    Bronchti G; Heil P; Sadka R; Hess A; Scheich H; Wollberg Z
    Eur J Neurosci; 2002 Jul; 16(2):311-29. PubMed ID: 12169112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.