These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11343723)

  • 1. A model of visual-spatial memory across saccades.
    Mitchell J; Zipser D
    Vision Res; 2001 May; 41(12):1575-92. PubMed ID: 11343723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributed population mechanism for the 3-D oculomotor reference frame transformation.
    Smith MA; Crawford JD
    J Neurophysiol; 2005 Mar; 93(3):1742-61. PubMed ID: 15537819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cortical control of ocular saccades in humans: a model for motricity.
    Pierrot-Deseilligny C; Müri RM; Ploner CJ; Gaymard B; Rivaud-Péchoux S
    Prog Brain Res; 2003; 142():3-17. PubMed ID: 12693251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential memory-guided saccades and target selection: a neural model of the frontal eye fields.
    Mitchell JF; Zipser D
    Vision Res; 2003 Nov; 43(25):2669-95. PubMed ID: 14552808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional organization within a neural network trained to update target representations across 3-D saccades.
    Keith GP; Smith MA; Crawford JD
    J Comput Neurosci; 2007 Apr; 22(2):191-209. PubMed ID: 17120151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial memory following shifts of gaze. I. Saccades to memorized world-fixed and gaze-fixed targets.
    Baker JT; Harper TM; Snyder LH
    J Neurophysiol; 2003 May; 89(5):2564-76. PubMed ID: 12740406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of macaque lateral intraparietal area delays initiation of the second saccade predominantly from contralesional eye positions in a double-saccade task.
    Li CS; Andersen RA
    Exp Brain Res; 2001 Mar; 137(1):45-57. PubMed ID: 11310171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames.
    Xing J; Andersen RA
    J Cogn Neurosci; 2000 Jul; 12(4):601-14. PubMed ID: 10936913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus.
    Mullette-Gillman OA; Cohen YE; Groh JM
    J Neurophysiol; 2005 Oct; 94(4):2331-52. PubMed ID: 15843485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vestibular integration in human cerebral cortex contributes to spatial remapping.
    Ventre-Dominey J; Vallee B
    Neuropsychologia; 2007 Jan; 45(2):435-9. PubMed ID: 16959278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Memory activity of LIP neurons for sequential eye movements simulated with neural networks.
    Xing J; Andersen RA
    J Neurophysiol; 2000 Aug; 84(2):651-65. PubMed ID: 10938293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye position effects on the remapped memory trace of visual motion in cortical area MST.
    Inaba N; Kawano K
    Sci Rep; 2016 Feb; 6():22013. PubMed ID: 26903084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual sensitivity of frontal eye field neurons during the preparation of saccadic eye movements.
    Krock RM; Moore T
    J Neurophysiol; 2016 Dec; 116(6):2882-2891. PubMed ID: 27683894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Saccades to remembered targets: the effects of smooth pursuit and illusory stimulus motion.
    Zivotofsky AZ; Rottach KG; Averbuch-Heller L; Kori AA; Thomas CW; Dell'Osso LF; Leigh RJ
    J Neurophysiol; 1996 Dec; 76(6):3617-32. PubMed ID: 8985862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial processing in the monkey frontal eye field. II. Memory responses.
    Umeno MM; Goldberg ME
    J Neurophysiol; 2001 Nov; 86(5):2344-52. PubMed ID: 11698524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working-memory tasks.
    Kastner S; DeSimone K; Konen CS; Szczepanski SM; Weiner KS; Schneider KA
    J Neurophysiol; 2007 May; 97(5):3494-507. PubMed ID: 17360822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distractor displacements during saccades are reflected in the time-course of saccade curvature.
    van Leeuwen J; Belopolsky AV
    Sci Rep; 2018 Feb; 8(1):2469. PubMed ID: 29410421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of parietal lobe lesions on saccade targeting and spatial memory in a naturalistic visual search task.
    Shimozaki SS; Hayhoe MM; Zelinsky GJ; Weinstein A; Merigan WH; Ballard DH
    Neuropsychologia; 2003; 41(10):1365-86. PubMed ID: 12757909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parietal representation of object-based saccades.
    Sabes PN; Breznen B; Andersen RA
    J Neurophysiol; 2002 Oct; 88(4):1815-29. PubMed ID: 12364508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The planning of a sequence of saccades in pro- and antisaccade tasks: influence of visual integration time and concurrent motor processing.
    Lavergne L; Vergilino-Perez D; Collins T; Orriols E; Doré-Mazars K
    Brain Res; 2008 Dec; 1245():82-95. PubMed ID: 18929544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.