These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 11343830)

  • 1. Fractal correlation of initial trajectory dynamics vanishes at the movement end point in human rapid goal-directed movements.
    Miyazaki M; Kadota H; Kudo K; Masani K; Ohtsuki T
    Neurosci Lett; 2001 May; 304(3):173-6. PubMed ID: 11343830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A kinematic analysis of how young adults with and without autism plan and control goal-directed movements.
    Glazebrook CM; Elliott D; Lyons J
    Motor Control; 2006 Jul; 10(3):244-64. PubMed ID: 17106133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal correlation in human H-reflex.
    Nozaki D; Nakazawa K; Yamamoto Y
    Exp Brain Res; 1995; 105(3):402-10. PubMed ID: 7498394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motor task difficulty and brain activity: investigation of goal-directed reciprocal aiming using positron emission tomography.
    Winstein CJ; Grafton ST; Pohl PS
    J Neurophysiol; 1997 Mar; 77(3):1581-94. PubMed ID: 9084621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effector mass and trajectory optimization in the online regulation of goal-directed movement.
    Burkitt JJ; Staite V; Yeung A; Elliott D; Lyons JL
    Exp Brain Res; 2015 Apr; 233(4):1097-107. PubMed ID: 25567091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Task specificity and the timing of discrete aiming movements.
    Hsieh TY; Liu YT; Newell KM
    Hum Mov Sci; 2019 Apr; 64():240-251. PubMed ID: 30802800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Muscle activation patterns in point-to-point and reversal movements in healthy, older subjects and in subjects with Parkinson's disease.
    Pfann KD; Robichaud JA; Gottlieb GL; Comella CL; Brandabur M; Corcos DM
    Exp Brain Res; 2004 Jul; 157(1):67-78. PubMed ID: 14991213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of altering attentional demands of gait control on the variability of temporal and kinematic parameters.
    Tanimoto K; Anan M; Sawada T; Takahashi M; Shinkoda K
    Gait Posture; 2016 Jun; 47():57-61. PubMed ID: 27264404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of real and illusory perturbations on the early trajectory adjustments of goal-directed movements.
    Grierson LE; Lyons J; Elliott D
    J Mot Behav; 2011; 43(5):383-91. PubMed ID: 21861628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of execution noise in movement variability.
    van Beers RJ; Haggard P; Wolpert DM
    J Neurophysiol; 2004 Feb; 91(2):1050-63. PubMed ID: 14561687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing the kinematics of hand movements in catching tasks-An online correction analysis of movement toward the target's trajectory.
    Slupinski L; de Lussanet MHE; Wagner H
    Behav Res Methods; 2018 Dec; 50(6):2316-2324. PubMed ID: 29218585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete and cyclical units of action in a mixed target pair aiming task.
    Buchanan JJ; Park JH; Ryu YU; Shea CH
    Exp Brain Res; 2003 Jun; 150(4):473-89. PubMed ID: 12739091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differences in visuomotor control between the upper and lower visual fields.
    Khan MA; Lawrence GP
    Exp Brain Res; 2005 Jul; 164(3):395-8. PubMed ID: 15991032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trajectory analysis of discrete goal-directed pointing movements: How many trials are needed for reliable data?
    Blinch J; Kim Y; Chua R
    Behav Res Methods; 2018 Oct; 50(5):2162-2172. PubMed ID: 29218584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction between intention and environmental constraints on the fractal dynamics of human performance.
    Washburn A; Coey CA; Romero V; Malone M; Richardson MJ
    Cogn Process; 2015 Nov; 16(4):343-50. PubMed ID: 25900114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetrical stabilization and mobilization exploited during static single leg stance and goal directed kicking.
    King AC; Wang Z
    Hum Mov Sci; 2017 Aug; 54():182-190. PubMed ID: 28501732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of concurrent physical and cognitive demands on arm movement kinematics in a repetitive upper-extremity precision task.
    Srinivasan D; Mathiassen SE; Samani A; Madeleine P
    Hum Mov Sci; 2015 Aug; 42():89-99. PubMed ID: 26024788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of overlapping submovements in the control of rapid hand movements.
    Novak KE; Miller LE; Houk JC
    Exp Brain Res; 2002 Jun; 144(3):351-64. PubMed ID: 12021817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transformation of the kinematic characteristics of a precise movement after a change in a spatial task.
    Vasil'eva ON
    Neurosci Behav Physiol; 2007 Sep; 37(7):659-68. PubMed ID: 17763985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories.
    Kuznetsov N; Bonnette S; Gao J; Riley MA
    Ann Biomed Eng; 2013 Aug; 41(8):1646-60. PubMed ID: 22956160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.