These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
652 related articles for article (PubMed ID: 11344080)
1. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Pirkkala L; Nykänen P; Sistonen L FASEB J; 2001 May; 15(7):1118-31. PubMed ID: 11344080 [TBL] [Abstract][Full Text] [Related]
2. Identification, tissue distribution and characterization of two heat shock factors (HSFs) in goldfish (Carassius auratus). Kim SS; Chang Z; Park JS Fish Shellfish Immunol; 2015 Apr; 43(2):375-86. PubMed ID: 25592877 [TBL] [Abstract][Full Text] [Related]
3. Heat shock factors at a crossroad between stress and development. Akerfelt M; Trouillet D; Mezger V; Sistonen L Ann N Y Acad Sci; 2007 Oct; 1113():15-27. PubMed ID: 17483205 [TBL] [Abstract][Full Text] [Related]
4. Stress proteins: nomenclature, division and functions. Kopecek P; Altmannová K; Weigl E Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2001 Dec; 145(2):39-47. PubMed ID: 12426770 [TBL] [Abstract][Full Text] [Related]
5. HSF1 and HSF3 cooperatively regulate the heat shock response in lizards. Takii R; Fujimoto M; Matsuura Y; Wu F; Oshibe N; Takaki E; Katiyar A; Akashi H; Makino T; Kawata M; Nakai A PLoS One; 2017; 12(7):e0180776. PubMed ID: 28686674 [TBL] [Abstract][Full Text] [Related]
6. Crosstalk between HSF1 and HSF2 during the heat shock response in mouse testes. Korfanty J; Stokowy T; Widlak P; Gogler-Piglowska A; Handschuh L; Podkowiński J; Vydra N; Naumowicz A; Toma-Jonik A; Widlak W Int J Biochem Cell Biol; 2014 Dec; 57():76-83. PubMed ID: 25450459 [TBL] [Abstract][Full Text] [Related]
7. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Sandqvist A; Björk JK; Akerfelt M; Chitikova Z; Grichine A; Vourc'h C; Jolly C; Salminen TA; Nymalm Y; Sistonen L Mol Biol Cell; 2009 Mar; 20(5):1340-7. PubMed ID: 19129477 [TBL] [Abstract][Full Text] [Related]
8. The maize heat shock factor-binding protein paralogs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors. Fu S; Rogowsky P; Nover L; Scanlon MJ Planta; 2006 Jun; 224(1):42-52. PubMed ID: 16331466 [TBL] [Abstract][Full Text] [Related]
9. Functional diversification of heat shock factors. Kovács D; Kovács M; Ahmed S; Barna J Biol Futur; 2022 Dec; 73(4):427-439. PubMed ID: 36402935 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regulatory pathway. Nakai A; Morimoto RI Mol Cell Biol; 1993 Apr; 13(4):1983-97. PubMed ID: 8455593 [TBL] [Abstract][Full Text] [Related]
11. The heat shock factor family and adaptation to proteotoxic stress. Fujimoto M; Nakai A FEBS J; 2010 Oct; 277(20):4112-25. PubMed ID: 20945528 [TBL] [Abstract][Full Text] [Related]
12. HSF3 is a major heat shock responsive factor duringchicken embryonic development. Kawazoe Y; Tanabe M; Sasai N; Nagata K; Nakai A Eur J Biochem; 1999 Oct; 265(2):688-97. PubMed ID: 10504401 [TBL] [Abstract][Full Text] [Related]
13. HSF3, a new heat shock factor from Arabidopsis thaliana, derepresses the heat shock response and confers thermotolerance when overexpressed in transgenic plants. Prändl R; Hinderhofer K; Eggers-Schumacher G; Schöffl F Mol Gen Genet; 1998 May; 258(3):269-78. PubMed ID: 9645433 [TBL] [Abstract][Full Text] [Related]
14. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Shinkawa T; Tan K; Fujimoto M; Hayashida N; Yamamoto K; Takaki E; Takii R; Prakasam R; Inouye S; Mezger V; Nakai A Mol Biol Cell; 2011 Oct; 22(19):3571-83. PubMed ID: 21813737 [TBL] [Abstract][Full Text] [Related]
15. The DNA-binding properties of two heat shock factors, HSF1 and HSF3, are induced in the avian erythroblast cell line HD6. Nakai A; Kawazoe Y; Tanabe M; Nagata K; Morimoto RI Mol Cell Biol; 1995 Oct; 15(10):5268-78. PubMed ID: 7565675 [TBL] [Abstract][Full Text] [Related]
16. Unraveling complex interplay between heat shock factor 1 and 2 splicing isoforms. Lecomte S; Reverdy L; Le Quément C; Le Masson F; Amon A; Le Goff P; Michel D; Christians E; Le Dréan Y PLoS One; 2013; 8(2):e56085. PubMed ID: 23418516 [TBL] [Abstract][Full Text] [Related]
17. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance. Tanabe M; Kawazoe Y; Takeda S; Morimoto RI; Nagata K; Nakai A EMBO J; 1998 Mar; 17(6):1750-8. PubMed ID: 9501096 [TBL] [Abstract][Full Text] [Related]
18. Modulation of human heat shock factor trimerization by the linker domain. Liu PC; Thiele DJ J Biol Chem; 1999 Jun; 274(24):17219-25. PubMed ID: 10358080 [TBL] [Abstract][Full Text] [Related]
19. Novel isoforms of heat shock transcription factor 1, HSF1γα and HSF1γβ, regulate chaperone protein gene transcription. Neueder A; Achilli F; Moussaoui S; Bates GP J Biol Chem; 2014 Jul; 289(29):19894-906. PubMed ID: 24855652 [TBL] [Abstract][Full Text] [Related]
20. Stress-specific activation and repression of heat shock factors 1 and 2. Mathew A; Mathur SK; Jolly C; Fox SG; Kim S; Morimoto RI Mol Cell Biol; 2001 Nov; 21(21):7163-71. PubMed ID: 11585899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]