These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 11344259)
21. High-Affinity Nicotinic Receptors Modulate Spontaneous Cortical Up States In Vitro. Sigalas C; Rigas P; Tsakanikas P; Skaliora I J Neurosci; 2015 Aug; 35(32):11196-208. PubMed ID: 26269630 [TBL] [Abstract][Full Text] [Related]
22. Identification of four classes of brain nicotinic receptors using beta2 mutant mice. Zoli M; Léna C; Picciotto MR; Changeux JP J Neurosci; 1998 Jun; 18(12):4461-72. PubMed ID: 9614223 [TBL] [Abstract][Full Text] [Related]
23. A novel α-conotoxin MII-sensitive nicotinic acetylcholine receptor modulates [(3) H]-GABA release in the superficial layers of the mouse superior colliculus. McClure-Begley TD; Wageman CR; Grady SR; Marks MJ; McIntosh JM; Collins AC; Whiteaker P J Neurochem; 2012 Jul; 122(1):48-57. PubMed ID: 22506481 [TBL] [Abstract][Full Text] [Related]
24. Anatomical origins of ocular dominance in mouse primary visual cortex. Coleman JE; Law K; Bear MF Neuroscience; 2009 Jun; 161(2):561-71. PubMed ID: 19327388 [TBL] [Abstract][Full Text] [Related]
25. Alpha7 but not alpha4 AChR subunit expression is regulated by light in developing primary visual cortex. Aztiria E; Gotti C; Domenici L J Comp Neurol; 2004 Dec; 480(4):378-91. PubMed ID: 15558799 [TBL] [Abstract][Full Text] [Related]
26. Reduced α4 subunit expression in α4 Moretti M; Fasoli F; Gotti C; Marks MJ Br J Pharmacol; 2018 Jun; 175(11):1944-1956. PubMed ID: 28585241 [TBL] [Abstract][Full Text] [Related]
27. The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. Tiriac A; Bistrong K; Pitcher MN; Tworig JM; Feller MB Cell Rep; 2022 Jan; 38(2):110225. PubMed ID: 35021080 [TBL] [Abstract][Full Text] [Related]
28. Spatial pattern of spontaneous retinal waves instructs retinotopic map refinement more than activity frequency. Xu HP; Burbridge TJ; Chen MG; Ge X; Zhang Y; Zhou ZJ; Crair MC Dev Neurobiol; 2015 Jun; 75(6):621-40. PubMed ID: 25787992 [TBL] [Abstract][Full Text] [Related]
29. Binocular response modulation in the lateral geniculate nucleus. Dougherty K; Schmid MC; Maier A J Comp Neurol; 2019 Feb; 527(3):522-534. PubMed ID: 29473163 [TBL] [Abstract][Full Text] [Related]
30. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Moretti M; Zoli M; George AA; Lukas RJ; Pistillo F; Maskos U; Whiteaker P; Gotti C Mol Pharmacol; 2014 Sep; 86(3):306-17. PubMed ID: 25002271 [TBL] [Abstract][Full Text] [Related]
31. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations. Toga AW; Collins RC J Comp Neurol; 1981 Jul; 199(4):443-64. PubMed ID: 6168665 [TBL] [Abstract][Full Text] [Related]
32. Visual map development depends on the temporal pattern of binocular activity in mice. Zhang J; Ackman JB; Xu HP; Crair MC Nat Neurosci; 2011 Nov; 15(2):298-307. PubMed ID: 22179110 [TBL] [Abstract][Full Text] [Related]
33. Cortico-thalamic connectivity is vulnerable to nicotine exposure during early postnatal development through α4/β2/α5 nicotinic acetylcholine receptors. Heath CJ; King SL; Gotti C; Marks MJ; Picciotto MR Neuropsychopharmacology; 2010 Nov; 35(12):2324-38. PubMed ID: 20736992 [TBL] [Abstract][Full Text] [Related]
34. Effects of retinal lesions upon the distribution of nicotinic acetylcholine receptor subunits in the chick visual system. Britto LR; Torrão AS; Hamassaki-Britto DE; Mpodozis J; Keyser KT; Lindstrom JM; Karten HJ J Comp Neurol; 1994 Dec; 350(3):473-84. PubMed ID: 7884052 [TBL] [Abstract][Full Text] [Related]
35. Ephrin-As and patterned retinal activity act together in the development of topographic maps in the primary visual system. Pfeiffenberger C; Yamada J; Feldheim DA J Neurosci; 2006 Dec; 26(50):12873-84. PubMed ID: 17167078 [TBL] [Abstract][Full Text] [Related]
36. Reduced antinociception in mice lacking neuronal nicotinic receptor subunits. Marubio LM; del Mar Arroyo-Jimenez M; Cordero-Erausquin M; Léna C; Le Novère N; de Kerchove d'Exaerde A; Huchet M; Damaj MI; Changeux JP Nature; 1999 Apr; 398(6730):805-10. PubMed ID: 10235262 [TBL] [Abstract][Full Text] [Related]
37. Molecular analysis of nicotinic receptor expression in autism. Martin-Ruiz CM; Lee M; Perry RH; Baumann M; Court JA; Perry EK Brain Res Mol Brain Res; 2004 Apr; 123(1-2):81-90. PubMed ID: 15046869 [TBL] [Abstract][Full Text] [Related]
38. Engineered α4β2 nicotinic acetylcholine receptors as models for measuring agonist binding and effect at the orthosteric low-affinity α4-α4 interface. Ahring PK; Olsen JA; Nielsen EØ; Peters D; Pedersen MH; Rohde LA; Kastrup JS; Shahsavar A; Indurthi DC; Chebib M; Gajhede M; Balle T Neuropharmacology; 2015 May; 92():135-45. PubMed ID: 25595102 [TBL] [Abstract][Full Text] [Related]
39. Binocular eyelid closure promotes anatomical but not behavioral recovery from monocular deprivation. Duffy KR; Bukhamseen DH; Smithen MJ; Mitchell DE Vision Res; 2015 Sep; 114():151-60. PubMed ID: 25536470 [TBL] [Abstract][Full Text] [Related]
40. Functional Differentiation of Mouse Visual Cortical Areas Depends upon Early Binocular Experience. Salinas KJ; Huh CYL; Zeitoun JH; Gandhi SP J Neurosci; 2021 Feb; 41(7):1470-1488. PubMed ID: 33376158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]