BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11344450)

  • 1. Metabolic flux modeling of detoxification of acetic acid by Ralstonia eutropha at slightly alkaline pH levels.
    Yu J; Wang J
    Biotechnol Bioeng; 2001 Jun; 73(6):458-64. PubMed ID: 11344450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic analysis on formation of poly(3-hydroxybutyrate) from acetic acid by Ralstonia eutropha under chemically defined conditions.
    Wang J; Yu J
    J Ind Microbiol Biotechnol; 2001 Mar; 26(3):121-6. PubMed ID: 11420650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Formation of polyhydroxyalkanoates during the dual-nutrient-limited zone by Ralstonia eutropha].
    Yan Q; Du GC; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2003 Jul; 19(4):497-501. PubMed ID: 15969073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids.
    Yu J; Si Y
    Biotechnol Prog; 2004; 20(4):1015-24. PubMed ID: 15296425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyhydroxyalkanoates production with Ralstonia eutropha from low quality waste animal fats.
    Riedel SL; Jahns S; Koenig S; Bock MC; Brigham CJ; Bader J; Stahl U
    J Biotechnol; 2015 Nov; 214():119-27. PubMed ID: 26428087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diverse protein regulations on PHA formation in Ralstonia eutropha on short chain organic acids.
    Lee SE; Li QX; Yu J
    Int J Biol Sci; 2009; 5(3):215-25. PubMed ID: 19270755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconversion of plant biomass hydrolysate into bioplastic (polyhydroxyalkanoates) using Ralstonia eutropha 5119.
    Bhatia SK; Gurav R; Choi TR; Jung HR; Yang SY; Moon YM; Song HS; Jeon JM; Choi KY; Yang YH
    Bioresour Technol; 2019 Jan; 271():306-315. PubMed ID: 30290323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombinant Ralstonia eutropha engineered to utilize xylose and its use for the production of poly(3-hydroxybutyrate) from sunflower stalk hydrolysate solution.
    Kim HS; Oh YH; Jang YA; Kang KH; David Y; Yu JH; Song BK; Choi JI; Chang YK; Joo JC; Park SJ
    Microb Cell Fact; 2016 Jun; 15():95. PubMed ID: 27260327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha.
    Yang YH; Brigham CJ; Budde CF; Boccazzi P; Willis LB; Hassan MA; Yusof ZA; Rha C; Sinskey AJ
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2037-45. PubMed ID: 20535466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fed-batch cultivation of Wautersia eutropha.
    Patwardhan P; Srivastava AK
    Bioresour Technol; 2008 Apr; 99(6):1787-92. PubMed ID: 17532211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of ppGpp Leads to Increased Mobilization of Intermediately Accumulated Poly(3-Hydroxybutyrate) in Ralstonia eutropha H16.
    Juengert JR; Borisova M; Mayer C; Wolz C; Brigham CJ; Sinskey AJ; Jendrossek D
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha.
    Oliveira FC; Freire DM; Castilho LR
    Biotechnol Lett; 2004 Dec; 26(24):1851-5. PubMed ID: 15672227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system.
    Du G; Chen J; Yu J; Lun S
    J Biotechnol; 2001 Jun; 88(1):59-65. PubMed ID: 11377765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of volatile fatty acids into polyhydroxyalkanoate by Ralstonia eutropha.
    Chakraborty P; Gibbons W; Muthukumarappan K
    J Appl Microbiol; 2009 Jun; 106(6):1996-2005. PubMed ID: 19320958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen and polyhydroxybutyrate production from wheat straw hydrolysate using Caldicellulosiruptor species and Ralstonia eutropha in a coupled process.
    Soto LR; Byrne E; van Niel EWJ; Sayed M; Villanueva CC; Hatti-Kaul R
    Bioresour Technol; 2019 Jan; 272():259-266. PubMed ID: 30352368
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent production by engineered Ralstonia eutropha: channeling carbon to biofuel.
    Chakravarty J; Brigham CJ
    Appl Microbiol Biotechnol; 2018 Jun; 102(12):5021-5031. PubMed ID: 29705960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid and fatty acid metabolism in Ralstonia eutropha: relevance for the biotechnological production of value-added products.
    Riedel SL; Lu J; Stahl U; Brigham CJ
    Appl Microbiol Biotechnol; 2014 Feb; 98(4):1469-83. PubMed ID: 24343766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Kinetic parameters of a culture of the hydrogen-oxidizing Ralstonia eutropha, grown under the regimen of biosynthesis of polyhydroxybutyrate].
    Volova TG; Voĭnov NA
    Prikl Biokhim Mikrobiol; 2003; 39(2):189-93. PubMed ID: 12722652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose.
    Park SJ; Jang YA; Noh W; Oh YH; Lee H; David Y; Baylon MG; Shin J; Yang JE; Choi SY; Lee SH; Lee SY
    Biotechnol Bioeng; 2015 Mar; 112(3):638-43. PubMed ID: 25258020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Green technology for conversion of food scraps to biodegradable thermoplastic polyhydroxyalkanoates.
    Du G; Yu J
    Environ Sci Technol; 2002 Dec; 36(24):5511-6. PubMed ID: 12521183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.