These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

712 related articles for article (PubMed ID: 11345429)

  • 21. Recognition of nucleic acid bases and base-pairs by hydrogen bonding to amino acid side-chains.
    Cheng AC; Chen WW; Fuhrmann CN; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):781-96. PubMed ID: 12654263
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.
    Millen AL; Churchill CD; Manderville RA; Wetmore SD
    J Phys Chem B; 2010 Oct; 114(40):12995-3004. PubMed ID: 20853889
    [TBL] [Abstract][Full Text] [Related]  

  • 23. FR3D: finding local and composite recurrent structural motifs in RNA 3D structures.
    Sarver M; Zirbel CL; Stombaugh J; Mokdad A; Leontis NB
    J Math Biol; 2008 Jan; 56(1-2):215-52. PubMed ID: 17694311
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sugar edge/sugar edge base pairs in RNA: stabilities and structures from quantum chemical calculations.
    Sponer JE; Leszczynski J; Sychrovský V; Sponer J
    J Phys Chem B; 2005 Oct; 109(39):18680-9. PubMed ID: 16853403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of RNA motifs.
    Leontis NB; Westhof E
    Curr Opin Struct Biol; 2003 Jun; 13(3):300-8. PubMed ID: 12831880
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct identification of NH...N hydrogen bonds in non-canonical base pairs of RNA by NMR spectroscopy.
    Wöhnert J; Dingley AJ; Stoldt M; Görlach M; Grzesiek S; Brown LR
    Nucleic Acids Res; 1999 Aug; 27(15):3104-10. PubMed ID: 10454606
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The role of N7 protonation of guanine in determining the structure, stability and function of RNA base pairs.
    Halder A; Bhattacharya S; Datta A; Bhattacharyya D; Mitra A
    Phys Chem Chem Phys; 2015 Oct; 17(39):26249-63. PubMed ID: 26382322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Non-Watson-Crick basepairing and hydration in RNA motifs: molecular dynamics of 5S rRNA loop E.
    Réblová K; Spacková N; Stefl R; Csaszar K; Koca J; Leontis NB; Sponer J
    Biophys J; 2003 Jun; 84(6):3564-82. PubMed ID: 12770867
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An innate twist between Crick's wobble and Watson-Crick base pairs.
    Ananth P; Goldsmith G; Yathindra N
    RNA; 2013 Aug; 19(8):1038-53. PubMed ID: 23861536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA tertiary structure of the HIV RRE domain II containing non-Watson-Crick base pairs GG and GA: molecular modeling studies.
    Le SY; Pattabiraman N; Maizel JV
    Nucleic Acids Res; 1994 Sep; 22(19):3966-76. PubMed ID: 7937119
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular dynamics of the frame-shifting pseudoknot from beet western yellows virus: the role of non-Watson-Crick base-pairing, ordered hydration, cation binding and base mutations on stability and unfolding.
    Csaszar K; Spacková N; Stefl R; Sponer J; Leontis NB
    J Mol Biol; 2001 Nov; 313(5):1073-91. PubMed ID: 11700064
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural diversity and isomorphism of hydrogen-bonded base interactions in nucleic acids.
    Walberer BJ; Cheng AC; Frankel AD
    J Mol Biol; 2003 Apr; 327(4):767-80. PubMed ID: 12654262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces.
    Shankar A; Jagota A; Mittal J
    J Phys Chem B; 2012 Oct; 116(40):12088-94. PubMed ID: 22967176
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conformational specificity of non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Mukherjee S; Bansal M; Bhattacharyya D
    J Comput Aided Mol Des; 2006; 20(10-11):629-45. PubMed ID: 17124630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stacking geometry for non-canonical G:U wobble base pair containing dinucleotide sequences in RNA: dispersion-corrected DFT-D study.
    Mondal M; Mukherjee S; Halder S; Bhattacharyya D
    Biopolymers; 2015 Jun; 103(6):328-38. PubMed ID: 25652776
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NCIR: a database of non-canonical interactions in known RNA structures.
    Nagaswamy U; Larios-Sanz M; Hury J; Collins S; Zhang Z; Zhao Q; Fox GE
    Nucleic Acids Res; 2002 Jan; 30(1):395-7. PubMed ID: 11752347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-Watson-Crick base pairs in RNA-protein recognition.
    Hermann T; Westhof E
    Chem Biol; 1999 Dec; 6(12):R335-43. PubMed ID: 10631510
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Motifs in nucleic acids: molecular mechanics restraints for base pairing and base stacking.
    Harvey SC; Wang C; Teletchea S; Lavery R
    J Comput Chem; 2003 Jan; 24(1):1-9. PubMed ID: 12483670
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-canonical base pairs and higher order structures in nucleic acids: crystal structure database analysis.
    Das J; Mukherjee S; Mitra A; Bhattacharyya D
    J Biomol Struct Dyn; 2006 Oct; 24(2):149-61. PubMed ID: 16928138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydration of RNA base pairs.
    Auffinger P; Westhof E
    J Biomol Struct Dyn; 1998 Dec; 16(3):693-707. PubMed ID: 10052625
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 36.