These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 11345471)

  • 1. Comparing representations of the environmental spatial scale of organic chemicals.
    Beyer A; Scheringer M; Schulze C; Matthies M
    Environ Toxicol Chem; 2001 Apr; 20(4):922-7. PubMed ID: 11345471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spatial scale of organic chemicals in multimedia fate modeling. Recent developments and significance for chemical assessment.
    Scheringer M; Hungerbühler K; Matthies M
    Environ Sci Pollut Res Int; 2001; 8(3):150-5. PubMed ID: 11505898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-comparison of multimedia modeling approaches: modes of transport, measures of long range transport potential and the spatial remote state.
    Stroebe M; Scheringer M; Held H; Hungerbühler K
    Sci Total Environ; 2004 Apr; 321(1-3):1-20. PubMed ID: 15050382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting long-range transport: a systematic evaluation of two multimedia transport models.
    Bennett DH; Scheringer M; McKone TE; Hungerbühler K
    Environ Sci Technol; 2001 Mar; 35(6):1181-9. PubMed ID: 11347931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multimedia partitioning, overall persistence, and long-range transport potential in the context of POPs and PBT chemical assessments.
    Scheringer M; Jones KC; Matthies M; Simonich S; van de Meent D
    Integr Environ Assess Manag; 2009 Oct; 5(4):557-76. PubMed ID: 19552504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of multimedia models for screening assessment of long-range transport potential and overall persistence.
    Klasmeier J; Matthies M; Macleod M; Fenner K; Scheringer M; Stroebe M; Le Gall AC; Mckone T; Van De Meent D; Wania F
    Environ Sci Technol; 2006 Jan; 40(1):53-60. PubMed ID: 16433332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Screening criteria for long-range transport potential of organic substances in water.
    Zarfl C; Scheringer M; Matthies M
    Environ Sci Technol; 2011 Dec; 45(23):10075-81. PubMed ID: 22011287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction to special series: science-based guidance and framework for the evaluation and identification of PBTs and POPs.
    Klecka GM; Muir DC; Dohmen P; Eisenreich SJ; Gobas FA; Jones KC; Mackay D; Tarazona JV; van Wijk D
    Integr Environ Assess Manag; 2009 Oct; 5(4):535-8. PubMed ID: 19552505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying remoteness from emission sources of persistent organic pollutants on a global scale.
    von Waldow H; Macleod M; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2010 Apr; 44(8):2791-6. PubMed ID: 20178381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-range transport potential of semivolatile organic chemicals in coupled air-water systems.
    Beyer A; Matthies M
    Environ Sci Pollut Res Int; 2001; 8(3):173-9. PubMed ID: 11505901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indicators for persistence and long-range transport potential as derived from multicompartment chemistry-transport modelling.
    Leip A; Lammel G
    Environ Pollut; 2004; 128(1-2):205-21. PubMed ID: 14667729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing persistence and long-range transport potential of current-use pesticides.
    Matthies M; Klasmeier J; Beyer A; Ehling C
    Environ Sci Technol; 2009 Dec; 43(24):9223-9. PubMed ID: 20000513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multivariate chemical map of industrial chemicals--assessment of various protocols for identification of chemicals of potential concern.
    Stenberg M; Linusson A; Tysklind M; Andersson PL
    Chemosphere; 2009 Aug; 76(7):878-84. PubMed ID: 19515399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pollutant-specific scale of multimedia models and its implications for the potential dose.
    Hertwich EG; McKone TE
    Environ Sci Technol; 2001 Jan; 35(1):142-8. PubMed ID: 11352000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental persistence of organic pollutants: guidance for development and review of POP risk profiles.
    Boethling R; Fenner K; Howard P; Klecka G; Madsen T; Snape JR; Whelan MJ
    Integr Environ Assess Manag; 2009 Oct; 5(4):539-56. PubMed ID: 19552498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistent organic pollutants in Vietnam: environmental contamination and human exposure.
    Minh TB; Iwata H; Takahashi S; Viet PH; Tuyen BC; Tanabe S
    Rev Environ Contam Toxicol; 2008; 193():213-90. PubMed ID: 20614345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Do persistent organic pollutants reach a thermodynamic equilibrium in the global environment?
    Schenker S; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2014 May; 48(9):5017-24. PubMed ID: 24654605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substance or space? The relative importance of substance properties and environmental characteristics in modeling the fate of chemicals in Europe.
    Hollander A; Pistocchi A; Huijbregts MA; Ragas AM; Van de Meent D
    Environ Toxicol Chem; 2009 Jan; 28(1):44-51. PubMed ID: 18712947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical screening--faster, cheaper, better?
    Renner R
    Environ Sci Technol; 2006 Jun; 40(12):3667-8. PubMed ID: 16830524
    [No Abstract]   [Full Text] [Related]  

  • 20. In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats.
    Reppas-Chrysovitsinos E; Sobek A; MacLeod M
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):134-146. PubMed ID: 29285590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.