These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 11345717)
1. Proton magnetic resonance chemical shift imaging (1H CSI)-directed stereotactic biopsy. Son BC; Kim MC; Choi BG; Kim EN; Baik HM; Choe BY; Naruse S; Kang JK Acta Neurochir (Wien); 2001; 143(1):45-9; discussion 49-50. PubMed ID: 11345717 [TBL] [Abstract][Full Text] [Related]
2. Feasibility of proton chemical shift imaging with a stereotactic headframe. Baik HM; Choe BY; Son BC; Kim MC; Kim EN; Lee HK; Suh TS Magn Reson Imaging; 2003 Jan; 21(1):55-9. PubMed ID: 12620547 [TBL] [Abstract][Full Text] [Related]
3. Value of 1H-magnetic resonance spectroscopy chemical shift imaging for detection of anaplastic foci in diffusely infiltrating gliomas with non-significant contrast-enhancement. Widhalm G; Krssak M; Minchev G; Wöhrer A; Traub-Weidinger T; Czech T; Asenbaum S; Marosi C; Knosp E; Hainfellner JA; Prayer D; Wolfsberger S J Neurol Neurosurg Psychiatry; 2011 May; 82(5):512-20. PubMed ID: 20971752 [TBL] [Abstract][Full Text] [Related]
5. An efficient chemical shift imaging scheme for magnetic resonance-guided neurosurgery. Liu H; Hall WA; Martin AJ; Truwit CL J Magn Reson Imaging; 2001 Jul; 14(1):1-7. PubMed ID: 11436207 [TBL] [Abstract][Full Text] [Related]
6. Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. Stadlbauer A; Moser E; Gruber S; Buslei R; Nimsky C; Fahlbusch R; Ganslandt O Neuroimage; 2004 Oct; 23(2):454-61. PubMed ID: 15488395 [TBL] [Abstract][Full Text] [Related]
7. Axonal damage in multiple sclerosis plaques: a combined magnetic resonance imaging and 1H-magnetic resonance spectroscopy study. Simone IL; Tortorella C; Federico F; Liguori M; Lucivero V; Giannini P; Carrara D; Bellacosa A; Livrea P J Neurol Sci; 2001 Jan; 182(2):143-50. PubMed ID: 11137520 [TBL] [Abstract][Full Text] [Related]
8. Recognition of anaplastic foci within low-grade gliomas using MR spectroscopy. Bradac O; Vrana J; Jiru F; Kramar F; Netuka D; Hrabal P; Horinek D; de Lacy P; Benes V Br J Neurosurg; 2014 Oct; 28(5):631-6. PubMed ID: 24377726 [TBL] [Abstract][Full Text] [Related]
9. MR spectroscopy in gliomatosis cerebri. Bendszus M; Warmuth-Metz M; Klein R; Burger R; Schichor C; Tonn JC; Solymosi L AJNR Am J Neuroradiol; 2000 Feb; 21(2):375-80. PubMed ID: 10696026 [TBL] [Abstract][Full Text] [Related]
10. [Application of (1)H MR spectroscopic imaging in radiation oncology: choline as a marker for determining the relative probability of tumor progression after radiation of glial brain tumors]. Lichy MP; Bachert P; Hamprecht F; Weber MA; Debus J; Schulz-Ertner D; Schlemmer HP; Kauczor HU Rofo; 2006 Jun; 178(6):627-33. PubMed ID: 16703499 [TBL] [Abstract][Full Text] [Related]
11. Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Zonari P; Baraldi P; Crisi G Neuroradiology; 2007 Oct; 49(10):795-803. PubMed ID: 17619871 [TBL] [Abstract][Full Text] [Related]
12. Targeting regions with highest lipid content on MR spectroscopy may improve diagnostic yield in stereotactic biopsy. Ng WH; Lim T J Clin Neurosci; 2008 May; 15(5):502-6. PubMed ID: 18334298 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of the response of metastatic brain tumors to stereotactic radiosurgery by proton magnetic resonance spectroscopy, 201TlCl single-photon emission computerized tomography, and gadolinium-enhanced magnetic resonance imaging. Kimura T; Sako K; Tanaka K; Gotoh T; Yoshida H; Aburano T; Tanaka T; Arai H; Nakada T J Neurosurg; 2004 May; 100(5):835-41. PubMed ID: 15137602 [TBL] [Abstract][Full Text] [Related]
14. Early metabolic changes in metastatic brain tumors after Gamma Knife radiosurgery: 1H-MRS study. Chernov MF; Hayashi M; Izawa M; Abe K; Usukura M; Ono Y; Kubo O; Hori T Brain Tumor Pathol; 2004; 21(2):63-7. PubMed ID: 15700835 [TBL] [Abstract][Full Text] [Related]
15. Proton magnetic resonance spectroscopic imaging integrated into image-guided surgery: correlation to standard magnetic resonance imaging and tumor cell density. Ganslandt O; Stadlbauer A; Fahlbusch R; Kamada K; Buslei R; Blumcke I; Moser E; Nimsky C Neurosurgery; 2005 Apr; 56(2 Suppl):291-8; discussion 291-8. PubMed ID: 15794826 [TBL] [Abstract][Full Text] [Related]
16. Distinction between recurrent glioma and radiation injury using magnetic resonance spectroscopy in combination with diffusion-weighted imaging. Zeng QS; Li CF; Liu H; Zhen JH; Feng DC Int J Radiat Oncol Biol Phys; 2007 May; 68(1):151-8. PubMed ID: 17289287 [TBL] [Abstract][Full Text] [Related]
17. In vitro study of astrocytic tumour metabolism by proton magnetic resonance spectroscopy. Likavcanová K; Dobrota D; Liptaj T; Prónayová N; Mlynárik V; Belan V; Galanda M; Béres A; De Riggo J Gen Physiol Biophys; 2005 Sep; 24(3):327-35. PubMed ID: 16308427 [TBL] [Abstract][Full Text] [Related]
18. Multisection 1H magnetic resonance spectroscopic imaging assessment of glioma response to chemotherapy. Balmaceda C; Critchell D; Mao X; Cheung K; Pannullo S; DeLaPaz RL; Shungu DC J Neurooncol; 2006 Jan; 76(2):185-91. PubMed ID: 16151595 [TBL] [Abstract][Full Text] [Related]
19. The utility of magnetic resonance spectroscopy in frame-less stereotactic needle biopsy of glioma. Wang Q; Zhang J; Li F; Chen X; Xu B J Clin Neurosci; 2021 Jun; 88():102-107. PubMed ID: 33992167 [TBL] [Abstract][Full Text] [Related]
20. Proton magnetic resonance spectroscopy in the distinction of high-grade cerebral gliomas from single metastatic brain tumors. Server A; Josefsen R; Kulle B; Maehlen J; Schellhorn T; Gadmar Ø; Kumar T; Haakonsen M; Langberg CW; Nakstad PH Acta Radiol; 2010 Apr; 51(3):316-25. PubMed ID: 20092374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]