BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 11345902)

  • 21. Structure-based design of a FAAH variant that discriminates between the N-acyl ethanolamine and taurine families of signaling lipids.
    McKinney MK; Cravatt BF
    Biochemistry; 2006 Aug; 45(30):9016-22. PubMed ID: 16866346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression and secretion of N-acylethanolamine-hydrolysing acid amidase in human prostate cancer cells.
    Wang J; Zhao LY; Uyama T; Tsuboi K; Wu XX; Kakehi Y; Ueda N
    J Biochem; 2008 Nov; 144(5):685-90. PubMed ID: 18806270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of fatty acid amide hydrolase activity in plants.
    Kim SC; Faure L; Chapman KD
    Methods Mol Biol; 2013; 1009():115-27. PubMed ID: 23681529
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the 5'-sequence of the mouse fatty acid amide hydrolase.
    Puffenbarger RA; Kapulina O; Howell JM; Deutsch DG
    Neurosci Lett; 2001 Nov; 314(1-2):21-4. PubMed ID: 11698137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Endocannabinoid metabolism in the absence of fatty acid amide hydrolase (FAAH): discovery of phosphorylcholine derivatives of N-acyl ethanolamines.
    Mulder AM; Cravatt BF
    Biochemistry; 2006 Sep; 45(38):11267-77. PubMed ID: 16981687
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alternative pathways of anandamide biosynthesis in rat testes.
    Schmid PC; Schwindenhammer D; Krebsbach RJ; Schmid HH
    Chem Phys Lipids; 1998 Mar; 92(1):27-35. PubMed ID: 9631536
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal lipidomics: regulation of bone metabolism by fatty acid amide family.
    Bab I; Smoum R; Bradshaw H; Mechoulam R
    Br J Pharmacol; 2011 Aug; 163(7):1441-6. PubMed ID: 21557736
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The palmitoylethanolamide and oleamide enigmas : are these two fatty acid amides cannabimimetic?
    Lambert DM; Di Marzo V
    Curr Med Chem; 1999 Aug; 6(8):757-73. PubMed ID: 10469890
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of N-acylethanolamine-hydrolyzing acid amidase in the degradation of anandamide and other N-acylethanolamines in macrophages.
    Sun YX; Tsuboi K; Zhao LY; Okamoto Y; Lambert DM; Ueda N
    Biochim Biophys Acta; 2005 Oct; 1736(3):211-20. PubMed ID: 16154384
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Endocannabinoids and fatty acid amides in cancer, inflammation and related disorders.
    De Petrocellis L; Melck D; Bisogno T; Di Marzo V
    Chem Phys Lipids; 2000 Nov; 108(1-2):191-209. PubMed ID: 11106791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N-acylethanolamine levels and macrophage activation.
    Alhouayek M; Bottemanne P; Makriyannis A; Muccioli GG
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 May; 1862(5):474-484. PubMed ID: 28065729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Omega-3 N-acylethanolamines are endogenously synthesised from omega-3 fatty acids in different human prostate and breast cancer cell lines.
    Brown I; Wahle KW; Cascio MG; Smoum-Jaouni R; Mechoulam R; Pertwee RG; Heys SD
    Prostaglandins Leukot Essent Fatty Acids; 2011 Dec; 85(6):305-10. PubMed ID: 21995886
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fatty acid amide hydrolase (FAAH) regulates hypercapnia/ischemia-induced increases in n-acylethanolamines in mouse brain.
    Lin L; Metherel AH; Jones PJ; Bazinet RP
    J Neurochem; 2017 Sep; 142(5):662-671. PubMed ID: 28488728
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymological studies on the biosynthesis of N-acylethanolamines.
    Ueda N; Tsuboi K; Uyama T
    Biochim Biophys Acta; 2010 Dec; 1801(12):1274-85. PubMed ID: 20736084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis, Quantification, and Characterization of Fatty Acid Amides from In Vitro and In Vivo Sources.
    Ni R; Bhandari S; Mitchell PR; Suarez G; Patel NB; Lamb K; Bisht KS; Merkler DJ
    Molecules; 2021 Apr; 26(9):. PubMed ID: 33925418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anandamide degradation and N-acylethanolamines level in wild-type and CB1 cannabinoid receptor knockout mice of different ages.
    Maccarrone M; Attinà M; Bari M; Cartoni A; Ledent C; Finazzi-Agrò A
    J Neurochem; 2001 Jul; 78(2):339-48. PubMed ID: 11461969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prostaglandin ethanolamides (prostamides): in vitro pharmacology and metabolism.
    Matias I; Chen J; De Petrocellis L; Bisogno T; Ligresti A; Fezza F; Krauss AH; Shi L; Protzman CE; Li C; Liang Y; Nieves AL; Kedzie KM; Burk RM; Di Marzo V; Woodward DF
    J Pharmacol Exp Ther; 2004 May; 309(2):745-57. PubMed ID: 14757851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biosynthesis and turnover of anandamide and other N-acylethanolamines in peritoneal macrophages.
    Kuwae T; Shiota Y; Schmid PC; Krebsbach R; Schmid HH
    FEBS Lett; 1999 Oct; 459(1):123-7. PubMed ID: 10508930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biosynthesis and inactivation of endocannabinoids: relevance to their proposed role as neuromodulators.
    Di Marzo V
    Life Sci; 1999; 65(6-7):645-55. PubMed ID: 10462065
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Occurrence, metabolism, and prospective functions of N-acylethanolamines in plants.
    Chapman KD
    Prog Lipid Res; 2004 Jul; 43(4):302-27. PubMed ID: 15234550
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.