BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1236 related articles for article (PubMed ID: 11346854)

  • 21. Redefining the manual wheelchair stroke cycle: identification and impact of nonpropulsive pushrim contact.
    Kwarciak AM; Sisto SA; Yarossi M; Price R; Komaroff E; Boninger ML
    Arch Phys Med Rehabil; 2009 Jan; 90(1):20-6. PubMed ID: 19154825
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The longitudinal relation between physical capacity and wheelchair skill performance during inpatient rehabilitation of people with spinal cord injury.
    Kilkens OJ; Dallmeijer AJ; Nene AV; Post MW; van der Woude LH
    Arch Phys Med Rehabil; 2005 Aug; 86(8):1575-81. PubMed ID: 16084810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Practice-based skill acquisition of pushrim-activated power-assisted wheelchair propulsion versus regular handrim propulsion in novices.
    de Klerk R; Lutjeboer T; Vegter RJK; van der Woude LHV
    J Neuroeng Rehabil; 2018 Jun; 15(1):56. PubMed ID: 29940986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Filter frequency selection for manual wheelchair biomechanics.
    Cooper RA; DiGiovine CP; Boninger ML; Shimada SD; Koontz AM; Baldwin MA
    J Rehabil Res Dev; 2002; 39(3):323-36. PubMed ID: 12173753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manual wheelchair propulsion patterns on natural surfaces during start-up propulsion.
    Koontz AM; Roche BM; Collinger JL; Cooper RA; Boninger ML
    Arch Phys Med Rehabil; 2009 Nov; 90(11):1916-23. PubMed ID: 19887217
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of 2-speed geared manual wheelchair propulsion on shoulder pain and function.
    Finley MA; Rodgers MM
    Arch Phys Med Rehabil; 2007 Dec; 88(12):1622-7. PubMed ID: 18047877
    [TBL] [Abstract][Full Text] [Related]  

  • 27. From "wheelchair circuit" to "wheelchair assessment instrument for people with multiple sclerosis": reliability and validity analysis of a test to assess driving skills in manual wheelchair users with multiple sclerosis.
    Vereecken M; Vanderstraeten G; Ilsbroukx S
    Arch Phys Med Rehabil; 2012 Jun; 93(6):1052-8. PubMed ID: 22475057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stroke pattern and handrim biomechanics for level and uphill wheelchair propulsion at self-selected speeds.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):81-7. PubMed ID: 17207680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A new design for an old concept of wheelchair pushrim.
    Medola FO; Fortulan CA; Purquerio Bde M; Elui VM
    Disabil Rehabil Assist Technol; 2012 May; 7(3):234-41. PubMed ID: 22066518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved efficiency with a wheelchair propelled by the legs using voluntary activity or electric stimulation.
    Stein RB; Chong SL; James KB; Bell GJ
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1198-203. PubMed ID: 11552191
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers.
    Khalili M; Kryt G; Mortenson WB; Van der Loos HFM; Borisoff J
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770323
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical advantage in wheelchair lever propulsion: effect on physical strain and efficiency.
    van der Woude LH; Botden E; Vriend I; Veeger D
    J Rehabil Res Dev; 1997 Jul; 34(3):286-94. PubMed ID: 9239621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic and physiological analysis of the GAME(Wheels) system.
    O'Connor TJ; Fitzgerald SG; Cooper RA; Thorman TA; Boninger ML
    J Rehabil Res Dev; 2002; 39(6):627-34. PubMed ID: 17943665
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Promoting Physical Activity Through a Manual Wheelchair Propulsion Intervention in Persons With Multiple Sclerosis.
    Rice IM; Rice LA; Motl RW
    Arch Phys Med Rehabil; 2015 Oct; 96(10):1850-8. PubMed ID: 26150167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of wheelchair mass on the physiologic responses, perception of exertion, and performance during various simulated daily tasks.
    Sagawa Y; Watelain E; Lepoutre FX; Thevenon A
    Arch Phys Med Rehabil; 2010 Aug; 91(8):1248-54. PubMed ID: 20684906
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of visual biofeedback on the propulsion effectiveness of experienced wheelchair users.
    Kotajarvi BR; Basford JR; An KN; Morrow DA; Kaufman KR
    Arch Phys Med Rehabil; 2006 Apr; 87(4):510-5. PubMed ID: 16571390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of respiration on the static rear stability of wheelchairs.
    Kirby RL; Heimrath O; Stewart A; Smith C; MacLeod DA
    Arch Phys Med Rehabil; 2010 Jun; 91(6):947-50. PubMed ID: 20510988
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison between a tilt-in-space wheelchair and a manual wheelchair equipped with a new rear anti-tip device from the perspective of the caregiver.
    Kirby RL; MacDonald B; Smith C; MacLeod DA; Webber A
    Arch Phys Med Rehabil; 2008 Sep; 89(9):1811-5. PubMed ID: 18760168
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wheelchair use by veterans newly prescribed a manual wheelchair.
    Ganesh S; Hayter A; Kim J; Sanford J; Sprigle S; Hoenig H
    Arch Phys Med Rehabil; 2007 Apr; 88(4):434-9. PubMed ID: 17398243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.