BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11347435)

  • 1. Combustion synthesis of porous materials for bone replacement.
    Zhang X; Ayers RA; Thorne K; Moore JJ; Schowengerdt F
    Biomed Sci Instrum; 2001; 37():463-8. PubMed ID: 11347435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combustion synthesis of porous glasses and ceramics for bone repair.
    Castillo M; Ayers RA; Zhang X; Schowengerdt F; Moore JJ
    Biomed Sci Instrum; 2001; 37():469-74. PubMed ID: 11347436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro bioactivity and osteoblast response of porous NiTi synthesized by SHS using nanocrystalline Ni-Ti reaction agent.
    Gu YW; Li H; Tay BY; Lim CS; Yong MS; Khor KA
    J Biomed Mater Res A; 2006 Aug; 78(2):316-23. PubMed ID: 16637041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combustion synthesis of porous biomaterials.
    Ayers RA; Burkes DE; Gottoli G; Yi HC; Zhim F; Yahia L; Moore JJ
    J Biomed Mater Res A; 2007 Jun; 81(3):634-43. PubMed ID: 17187390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High strength, low stiffness, porous NiTi with superelastic properties.
    Greiner C; Oppenheimer SM; Dunand DC
    Acta Biomater; 2005 Nov; 1(6):705-16. PubMed ID: 16701851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface characteristics, mechanical properties, and cytocompatibility of oxygen plasma-implanted porous nickel titanium shape memory alloy.
    Wu SL; Chu PK; Liu XM; Chung CY; Ho JP; Chu CL; Tjong SC; Yeung KW; Lu WW; Cheung KM; Luk KD
    J Biomed Mater Res A; 2006 Oct; 79(1):139-46. PubMed ID: 16779766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Experimental study of prostheses modified by three dimensions porous Ti combined bone morphogenetic proteins].
    Li ZL; Wang Y; Zhang GQ; Zhou M; Xue J
    Zhonghua Wai Ke Za Zhi; 2008 Jan; 46(2):129-31. PubMed ID: 18509973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metallic materials stimulating bone formation.
    Kokubo T
    Med J Malaysia; 2004 May; 59 Suppl B():91-2. PubMed ID: 15468833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of porous NiTi biomedical alloy by SHS method.
    Saadati A; Aghajani H
    J Mater Sci Mater Med; 2019 Aug; 30(8):92. PubMed ID: 31388767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold.
    Wu S; Liu X; Wu G; Yeung KW; Zheng D; Chung CY; Xu ZS; Chu PK
    J Biomed Mater Res A; 2013 Sep; 101(9):2586-601. PubMed ID: 23401387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties and osteoconductivity of porous bioactive titanium.
    Takemoto M; Fujibayashi S; Neo M; Suzuki J; Kokubo T; Nakamura T
    Biomaterials; 2005 Oct; 26(30):6014-23. PubMed ID: 15885769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.
    Bassani P; Panseri S; Ruffini A; Montesi M; Ghetti M; Zanotti C; Tampieri A; Tuissi A
    J Mater Sci Mater Med; 2014 Oct; 25(10):2277-85. PubMed ID: 24928669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface mechanical properties, corrosion resistance, and cytocompatibility of nitrogen plasma-implanted nickel-titanium alloys: a comparative study with commonly used medical grade materials.
    Yeung KW; Poon RW; Chu PK; Chung CY; Liu XY; Lu WW; Chan D; Chan SC; Luk KD; Cheung KM
    J Biomed Mater Res A; 2007 Aug; 82(2):403-14. PubMed ID: 17295246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characteristics of porous nickel-titanium alloys for medical applications.
    Hernández R; Polizu S; Turenne S; Yahia L
    Biomed Mater Eng; 2002; 12(1):37-45. PubMed ID: 11847407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute.
    Bertheville B
    Biomaterials; 2006 Mar; 27(8):1246-50. PubMed ID: 16174525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of microporous NiTi by transient liquid phase sintering of elemental powders.
    Ismail MH; Goodall R; Davies HA; Todd I
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1480-5. PubMed ID: 24364948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.