These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

308 related articles for article (PubMed ID: 11347449)

  • 1. Polymer modified electrodes for the reversible oxidation-reduction of NAD+/NADH for use within amperometric biosensors.
    Warrington RJ; Higson SP
    Biomed Sci Instrum; 2001; 37():75-80. PubMed ID: 11347449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes.
    Valentini F; Salis A; Curulli A; Palleschi G
    Anal Chem; 2004 Jun; 76(11):3244-8. PubMed ID: 15167808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergetic effect for NADH oxidation of ferrocene and zeolite in modified carbon paste electrodes. New approach for dehydrogenase based biosensors.
    Serban S; El Murr N
    Biosens Bioelectron; 2004 Sep; 20(2):161-6. PubMed ID: 15308217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison between the use of a redox mediator in solution and of surface modified electrodes in the electrocatalytic oxidation of nicotinamide adenine dinucleotide.
    Antiochia R; Lavagnini I; Pastore P; Magno F
    Bioelectrochemistry; 2004 Sep; 64(2):157-63. PubMed ID: 15296789
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of formal potential of NADH/NAD+ redox couple and catalytic oxidation of NADH using poly(phenosafranin)-modified carbon electrodes.
    Saleh FS; Rahman MR; Okajima T; Mao L; Ohsaka T
    Bioelectrochemistry; 2011 Feb; 80(2):121-7. PubMed ID: 20667793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of butane to butanol coupled to electrochemical redox reaction of NAD+/NADH.
    Kang HS; Na BK; Park DH
    Biotechnol Lett; 2007 Aug; 29(8):1277-80. PubMed ID: 17549436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of the kinetic isotope effect for the oxidation of NADH at a poly(aniline)-modified electrode.
    Bartlett PN; Simon E
    J Am Chem Soc; 2003 Apr; 125(14):4014-5. PubMed ID: 12670199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 6-Vinyl coenzyme Q0: Electropolymerization and electrocatalysis of NADH oxidation exploiting poly-p-quinone-modified electrode surfaces.
    Li Y; Shi L; Ma W; Li DW; Kraatz HB; Long YT
    Bioelectrochemistry; 2011 Feb; 80(2):128-31. PubMed ID: 20678972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New redox mediator-modified polysulfone composite films for the development of dehydrogenase-based biosensors.
    Prieto-Simón B; Fàbregas E
    Biosens Bioelectron; 2006 Jul; 22(1):131-7. PubMed ID: 16448813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.
    Kwon SJ; Yang H; Jo K; Kwak J
    Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and characterization of Meldola's blue/zinc oxide hybrid electrodes for efficient detection of the reduced form of nicotinamide adenine dinucleotide at low potential.
    Kumar SA; Chen SM
    Anal Chim Acta; 2007 May; 592(1):36-44. PubMed ID: 17499068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amperometric biosensors based on redox polymer-carbon nanotube-enzyme composites.
    Joshi PP; Merchant SA; Wang Y; Schmidtke DW
    Anal Chem; 2005 May; 77(10):3183-8. PubMed ID: 15889907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated, electrically contacted NAD(P)+-dependent enzyme-carbon nanotube electrodes for biosensors and biofuel cell applications.
    Yan YM; Yehezkeli O; Willner I
    Chemistry; 2007; 13(36):10168-75. PubMed ID: 17937376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in NADH electrochemical sensing design.
    Radoi A; Compagnone D
    Bioelectrochemistry; 2009 Sep; 76(1-2):126-34. PubMed ID: 19608463
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of redox polymer based electrode and electrochemical behavior for DNA detection.
    Kuralay F; Erdem A; Abaci S; Ozyörük H; Yildiz A
    Anal Chim Acta; 2009 Jun; 643(1-2):83-9. PubMed ID: 19446067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes.
    Zhu L; Zhai J; Yang R; Tian C; Guo L
    Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.
    Pérez B; Del Valle M; Alegret S; Merkoçi A
    Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan repressor-binding proteins from Escherichia coli and Archaeoglobus fulgidus as new catalysts for 1,4-dihydronicotinamide adenine dinucleotide-dependent amperometric biosensors and biofuel cells.
    Zafar MN; Tasca F; Gorton L; Patridge EV; Ferry JG; Nöll G
    Anal Chem; 2009 May; 81(10):4082-8. PubMed ID: 19438267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.