BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11347731)

  • 1. Control system for an MRI compatible intracavitary ultrasound array for thermal treatment of prostate disease.
    Smith NB; Merrilees NK; Dahleh M; Hynynen K
    Int J Hyperthermia; 2001; 17(3):271-82. PubMed ID: 11347731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transrectal ultrasound applicator for prostate heating monitored using MRI thermometry.
    Smith NB; Buchanan MT; Hynynen K
    Int J Radiat Oncol Biol Phys; 1999 Jan; 43(1):217-25. PubMed ID: 9989529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MR thermometry characterization of a hyperthermia ultrasound array designed using the k-space computational method.
    Al-Bataineh OM; Collins CM; Park EJ; Lee H; Smith NB
    Biomed Eng Online; 2006 Oct; 5():56. PubMed ID: 17064421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The feasibility of MRI-guided whole prostate ablation with a linear aperiodic intracavitary ultrasound phased array.
    Sokka SD; Hynynen KH
    Phys Med Biol; 2000 Nov; 45(11):3373-83. PubMed ID: 11098911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endocavitary thermal therapy by MRI-guided phased-array contact ultrasound: experimental and numerical studies on the multi-input single-output PID temperature controller's convergence and stability.
    Salomir R; Rata M; Cadis D; Petrusca L; Auboiroux V; Cotton F
    Med Phys; 2009 Oct; 36(10):4726-41. PubMed ID: 19928104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracavitary ultrasound phased arrays for prostate thermal therapies: MRI compatibility and in vivo testing.
    Hutchinson EB; Hynynen K
    Med Phys; 1998 Dec; 25(12):2392-9. PubMed ID: 9874833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformal thermal therapy using planar ultrasound transducers and adaptive closed-loop MR temperature control: demonstration in gel phantoms and ex vivo tissues.
    Tang K; Choy V; Chopra R; Bronskill MJ
    Phys Med Biol; 2007 May; 52(10):2905-19. PubMed ID: 17473359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transurethral ultrasound applicators with directional heating patterns for prostate thermal therapy: in vivo evaluation using magnetic resonance thermometry.
    Diederich CJ; Stafford RJ; Nau WH; Burdette EC; Price RE; Hazle JD
    Med Phys; 2004 Feb; 31(2):405-13. PubMed ID: 15000627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The feasibility of MRI feedback control for intracavitary phased array hyperthermia treatments.
    Hutchinson E; Dahleh M; Hynynen K
    Int J Hyperthermia; 1998; 14(1):39-56. PubMed ID: 9483445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and experimental evaluation of an intracavitary ultrasound phased array system for hyperthermia.
    Buchanan MT; Hynynen K
    IEEE Trans Biomed Eng; 1994 Dec; 41(12):1178-87. PubMed ID: 7851919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D conformal MRI-controlled transurethral ultrasound prostate therapy: validation of numerical simulations and demonstration in tissue-mimicking gel phantoms.
    Burtnyk M; N'Djin WA; Kobelevskiy I; Bronskill M; Chopra R
    Phys Med Biol; 2010 Nov; 55(22):6817-39. PubMed ID: 21030751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Curvilinear transurethral ultrasound applicator for selective prostate thermal therapy.
    Ross AB; Diederich CJ; Nau WH; Rieke V; Butts RK; Sommer G; Gill H; Bouley DM
    Med Phys; 2005 Jun; 32(6):1555-65. PubMed ID: 16013714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation and correction of transient cavitation-induced PRFS thermometry artifacts during radiofrequency ablation, using simultaneous ultrasound/MR imaging.
    Viallon M; Terraz S; Roland J; Dumont E; Becker CD; Salomir R
    Med Phys; 2010 Apr; 37(4):1491-506. PubMed ID: 20443470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial and Temporal Control of Hyperthermia Using Real Time Ultrasonic Thermal Strain Imaging with Motion Compensation, Phantom Study.
    Foiret J; Ferrara KW
    PLoS One; 2015; 10(8):e0134938. PubMed ID: 26244783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artefacts in intracavitary temperature measurements during regional hyperthermia.
    Kok HP; Van den Berg CA; Van Haaren PM; Crezee J
    Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Real-Time Closed-Loop Temperature Control for Ultrasound Hyperthermia Using Magnetic Resonance Thermometry.
    Sun L; Collins CM; Schiano JL; Smith MB; Smith NB
    Concepts Magn Reson Part B Magn Reson Eng; 2005 Oct; 27B(1):51-63. PubMed ID: 22723751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisectored interstitial ultrasound applicators for dynamic angular control of thermal therapy.
    Kinsey AM; Diederich CJ; Tyreus PD; Nau WH; Rieke V; Pauly KB
    Med Phys; 2006 May; 33(5):1352-63. PubMed ID: 16752571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method for MRI-guided conformal thermal therapy of prostate with planar transurethral ultrasound heating applicators.
    Chopra R; Burtnyk M; Haider MA; Bronskill MJ
    Phys Med Biol; 2005 Nov; 50(21):4957-75. PubMed ID: 16237234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localised hyperthermia in rodent models using an MRI-compatible high-intensity focused ultrasound system.
    Bing C; Nofiele J; Staruch R; Ladouceur-Wodzak M; Chatzinoff Y; Ranjan A; Chopra R
    Int J Hyperthermia; 2015; 31(8):813-22. PubMed ID: 26540488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-controlled transurethral ultrasound therapy for localised prostate cancer.
    Chopra R; Burtnyk M; N'djin WA; Bronskill M
    Int J Hyperthermia; 2010; 26(8):804-21. PubMed ID: 21043572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.