BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 11347938)

  • 1. Phytoremediation of MTBE from a groundwater plume.
    Hong MS; Farmayan WF; Dortch IJ; Chiang CY; McMillan SK; Schnoor JL
    Environ Sci Technol; 2001 Mar; 35(6):1231-9. PubMed ID: 11347938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytoremediation of MTBE with hybrid poplar trees.
    Ma X; Richter AR; Albers S; Burken JG
    Int J Phytoremediation; 2004; 6(2):157-67. PubMed ID: 15328981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon isotopic fractionation during anaerobic biotransformation of methyl tert-butyl ether and tert-amyl methyl ether.
    Somsamak P; Richnow HH; Häggblom MM
    Environ Sci Technol; 2005 Jan; 39(1):103-9. PubMed ID: 15667082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of biostimulation versus bioaugmentation with bacterial strain PM1 for treatment of groundwater contaminated with methyl tertiary butyl ether (MTBE).
    Smith AE; Hristova K; Wood I; Mackay DM; Lory E; Lorenzana D; Scow KM
    Environ Health Perspect; 2005 Mar; 113(3):317-22. PubMed ID: 15743721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential for phytoremediation of MTBE.
    Rubin E; Ramaswami A
    Water Res; 2001 Apr; 35(5):1348-53. PubMed ID: 11268857
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of compound-specific stable carbon isotope analyses to demonstrate anaerobic biodegradation of MTBE in groundwater at a gasoline release site.
    Kolhatkar R; Kuder T; Philp P; Allen J; Wilson JT
    Environ Sci Technol; 2002 Dec; 36(23):5139-46. PubMed ID: 12523431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-significance of rhizosphere degradation during phytoremediation of MTBE.
    Ramaswami A; Rubin E; Bonola S
    Int J Phytoremediation; 2003; 5(4):315-31. PubMed ID: 14750560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methyl tert-butyl ether biodegradation by indigenous aquifer microorganisms under natural and artificial oxic conditions.
    Landmeyer JE; Chapelle FH; Herlong HH; Bradley PM
    Environ Sci Technol; 2001 Mar; 35(6):1118-26. PubMed ID: 11347923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monitoring biodegradation of methyl tert-butyl ether (MTBE) using compound-specific carbon isotope analysis.
    Hunkeler D; Butler BJ; Aravena R; Barker JF
    Environ Sci Technol; 2001 Feb; 35(4):676-81. PubMed ID: 11349277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE.
    Zwank L; Berg M; Elsner M; Schmidt TC; Schwarzenbach RP; Haderlein SB
    Environ Sci Technol; 2005 Feb; 39(4):1018-29. PubMed ID: 15773473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of methyl tertiary-butyl ether (MTBE) by an innovative biofilter.
    Hu C; Acuna-Askar K; Englande AJ
    Water Sci Technol; 2004; 49(1):87-94. PubMed ID: 14979542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence.
    Kuder T; Wilson JT; Kaiser P; Kolhatkar R; Philp P; Allen J
    Environ Sci Technol; 2005 Jan; 39(1):213-20. PubMed ID: 15667097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Persistence of methyl tertiary butyl ether (MTBE) against metabolism by Danish vegetation.
    Trapp S; Yu X; Mosbaek H
    Environ Sci Pollut Res Int; 2003; 10(6):357-60. PubMed ID: 14690024
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintaining hydraulic control using deep rooted tree systems.
    Ferro A; Gefell M; Kjelgren R; Lipson DS; Zollinger N; Jackson S
    Adv Biochem Eng Biotechnol; 2003; 78():125-56. PubMed ID: 12674401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of deep-rooted phreatophytic trees at a site containing total petroleum hydrocarbons.
    Ferro AM; Adham T; Berra B; Tsao D
    Int J Phytoremediation; 2013; 15(3):232-44. PubMed ID: 23488009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, metabolism, and toxicity of methyl tert-butyl ether (MTBE) in weeping willows.
    Yu XZ; Gu JD
    J Hazard Mater; 2006 Oct; 137(3):1417-23. PubMed ID: 16723185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lab-scale tests and numerical simulations for in situ treatment of polluted groundwater.
    Careghini A; Saponaro S; Sezenna E; Daghio M; Franzetti A; Gandolfi I; Bestetti G
    J Hazard Mater; 2015 Apr; 287():162-70. PubMed ID: 25644032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater remediation by an in situ biobarrier: a bench scale feasibility test for methyl tert-butyl ether and other gasoline compounds.
    Saponaro S; Negri M; Sezenna E; Bonomo L; Sorlini C
    J Hazard Mater; 2009 Aug; 167(1-3):545-52. PubMed ID: 19200654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethers as pollutants in groundwater: the role of reaction parameters during the aquasonolysis.
    Lifka J; Hofmann J; Ondruschka B
    Water Sci Technol; 2001; 44(5):139-44. PubMed ID: 11695451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface.
    Schmidt TC; Schirmer M; Weiss H; Haderlein SB
    J Contam Hydrol; 2004 Jun; 70(3-4):173-203. PubMed ID: 15134874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.