BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 11348094)

  • 21. Wettability of supercritical carbon dioxide/water/quartz systems: simultaneous measurement of contact angle and interfacial tension at reservoir conditions.
    Saraji S; Goual L; Piri M; Plancher H
    Langmuir; 2013 Jun; 29(23):6856-66. PubMed ID: 23627310
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wettability alteration: A comprehensive review of materials/methods and testing the selected ones on heavy-oil containing oil-wet systems.
    Mohammed M; Babadagli T
    Adv Colloid Interface Sci; 2015 Jun; 220():54-77. PubMed ID: 25798909
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Decomposition of trichloroethylene and 2,4-dichlorophenol by ozonation in several organic solvents.
    Tsai TY; Okawa K; Nakano Y; Nishijima W; Okada M
    Chemosphere; 2004 Dec; 57(9):1151-5. PubMed ID: 15504474
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature influence on the NAPL-water interfacial area between 10 °C and 60 °C for trichloroethylene.
    Koproch N; Dahmke A; Schwardt A; Köber R
    J Contam Hydrol; 2022 Feb; 245():103932. PubMed ID: 34952400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial induced wettability alteration with implications for Underground Hydrogen Storage.
    Boon M; Buntic I; Ahmed K; Dopffel N; Peters C; Hajibeygi H
    Sci Rep; 2024 Apr; 14(1):8248. PubMed ID: 38589617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron-mediated trichloroethene reduction within nonaqueous phase liquid.
    Berge ND; Ramsburg CA
    J Contam Hydrol; 2010 Nov; 118(3-4):105-16. PubMed ID: 20708817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Granular encapsulation of light hydrophobic liquids (LHL) in LHL-salt water systems: Particle induced densification with quartz sand.
    Boglaienko D; Tansel B; Sukop MC
    Chemosphere; 2016 Feb; 144():1358-64. PubMed ID: 26490430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced mobility of non aqueous phase liquid (NAPL) during drying of wet sand.
    Govindarajan D; Deshpande AP; Raghunathan R
    J Contam Hydrol; 2018 Feb; 209():1-13. PubMed ID: 29329939
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustically enhanced multicomponent NAPL ganglia dissolution in water saturated packed columns.
    Chrysikopoulos CV; Vogler ET
    Environ Sci Technol; 2004 May; 38(10):2940-5. PubMed ID: 15212271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of sorption and desorption resistance on aerobic trichloroethylene biodegradation in soils.
    Lee S; Moe WM; Valsaraj KT; Pardue JH
    Environ Toxicol Chem; 2002 Aug; 21(8):1609-17. PubMed ID: 12152760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An in situ study of the effect of nitrate on the reduction of trichloroethylene by granular iron.
    Ritter K; Odziemkowski MS; Simpgraga R; Gillham RW; Irish DE
    J Contam Hydrol; 2003 Aug; 65(1-2):121-36. PubMed ID: 12855204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Wetting of polymers by their solvents.
    Lequeux F; Talini L; Verneuil E; Delannoy G; Valois P
    Eur Phys J E Soft Matter; 2016 Feb; 39(2):12. PubMed ID: 26920515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wettability hysteresis and its implications for DNAPL source zone distribution.
    Ryder JL; Demond AH
    J Contam Hydrol; 2008 Nov; 102(1-2):39-48. PubMed ID: 18848369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hindered gas-phase partitioning of trichloroethylene from aqueous cyclodextrin systems: implications for treatment and analysis.
    Kashiyama N; Boving TB
    Environ Sci Technol; 2004 Aug; 38(16):4439-44. PubMed ID: 15382875
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Remediation of trichloroethylene-contaminated soils by star technology using vegetable oil smoldering.
    Salman M; Gerhard JI; Major DW; Pironi P; Hadden R
    J Hazard Mater; 2015 Mar; 285():346-55. PubMed ID: 25528233
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Secondary imbibition in NAPL-invaded mixed-wet sediments.
    Al-Futaisi A; Patzek TW
    J Contam Hydrol; 2004 Oct; 74(1-4):61-81. PubMed ID: 15358487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media.
    D'Aniello A; Hartog N; Sweijen T; Pianese D
    J Contam Hydrol; 2018 Feb; 209():14-23. PubMed ID: 29338881
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the Wettability Alteration of Tight Sandstone by Low-Frequency Vibration and Nanofluid.
    Gu X; Yan D; Zhang Z; Liu Z; Jing C; Meng X; Liu Y
    ACS Omega; 2024 Feb; 9(5):5705-5714. PubMed ID: 38343962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ stabilization of NAPL contaminant source-zones as a remediation technique to reduce mass discharge and flux to groundwater.
    Mateas DJ; Tick GR; Carroll KC
    J Contam Hydrol; 2017 Sep; 204():40-56. PubMed ID: 28780996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.