BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 11349062)

  • 21. Cloning and sequencing of a Candida albicans catalase gene and effects of disruption of this gene.
    Wysong DR; Christin L; Sugar AM; Robbins PW; Diamond RD
    Infect Immun; 1998 May; 66(5):1953-61. PubMed ID: 9573075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecm7, a regulator of HACS, functions in calcium homeostasis maintenance, oxidative stress response and hyphal development in Candida albicans.
    Ding X; Yu Q; Xu N; Wang Y; Cheng X; Qian K; Zhao Q; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2013 Aug; 57():23-32. PubMed ID: 23769872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The protein kinase CaSch9p is required for the cell growth, filamentation and virulence in the human fungal pathogen Candida albicans.
    Liu W; Zhao J; Li X; Li Y; Jiang L
    FEMS Yeast Res; 2010 Jun; 10(4):462-70. PubMed ID: 20345900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pga13 in Candida albicans is localized in the cell wall and influences cell surface properties, morphogenesis and virulence.
    Gelis S; de Groot PW; Castillo L; Moragues MD; Sentandreu R; Gómez MM; Valentín E
    Fungal Genet Biol; 2012 Apr; 49(4):322-31. PubMed ID: 22343036
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Generation and functional in vivo characterization of a lipid kinase defective phosphatidylinositol 3-kinase Vps34p of Candida albicans.
    Günther J; Nguyen M; Härtl A; Künkel W; Zipfel PF; Eck R
    Microbiology (Reading); 2005 Jan; 151(Pt 1):81-89. PubMed ID: 15632428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PMT family of Candida albicans: five protein mannosyltransferase isoforms affect growth, morphogenesis and antifungal resistance.
    Prill SK; Klinkert B; Timpel C; Gale CA; Schröppel K; Ernst JF
    Mol Microbiol; 2005 Jan; 55(2):546-60. PubMed ID: 15659169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans.
    Leach MD; Stead DA; Argo E; MacCallum DM; Brown AJ
    Mol Microbiol; 2011 Mar; 79(6):1574-93. PubMed ID: 21269335
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Candida albicans protein kinase CK2 governs virulence during oropharyngeal candidiasis.
    Chiang LY; Sheppard DC; Bruno VM; Mitchell AP; Edwards JE; Filler SG
    Cell Microbiol; 2007 Jan; 9(1):233-45. PubMed ID: 16939537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of Hwp2, a Candida albicans putative GPI-anchored cell wall protein necessary for invasive growth.
    Hayek P; Dib L; Yazbeck P; Beyrouthy B; Khalaf RA
    Microbiol Res; 2010 Mar; 165(3):250-8. PubMed ID: 19616419
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genetically regulated filamentation contributes to Candida albicans virulence during corneal infection.
    Jackson BE; Wilhelmus KR; Mitchell BM
    Microb Pathog; 2007; 42(2-3):88-93. PubMed ID: 17241762
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Function and subcellular localization of Gcn5, a histone acetyltransferase in Candida albicans.
    Chang P; Fan X; Chen J
    Fungal Genet Biol; 2015 Aug; 81():132-41. PubMed ID: 25656079
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A family of secreted pathogenesis-related proteins in Candida albicans.
    Röhm M; Lindemann E; Hiller E; Ermert D; Lemuth K; Trkulja D; Sogukpinar O; Brunner H; Rupp S; Urban CF; Sohn K
    Mol Microbiol; 2013 Jan; 87(1):132-51. PubMed ID: 23136884
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Roles of Candida albicans Sfl1 in hyphal development.
    Li Y; Su C; Mao X; Cao F; Chen J
    Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role for endosomal and vacuolar GTPases in Candida albicans pathogenesis.
    Johnston DA; Eberle KE; Sturtevant JE; Palmer GE
    Infect Immun; 2009 Jun; 77(6):2343-55. PubMed ID: 19364843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of TFP1 in vacuolar acidification, oxidative stress and filamentous development in Candida albicans.
    Jia C; Yu Q; Xu N; Zhang B; Dong Y; Ding X; Chen Y; Zhang B; Xing L; Li M
    Fungal Genet Biol; 2014 Oct; 71():58-67. PubMed ID: 25220074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis for the deficiency in humans of gulonolactone oxidase, a key enzyme for ascorbic acid biosynthesis.
    Nishikimi M; Yagi K
    Am J Clin Nutr; 1991 Dec; 54(6 Suppl):1203S-1208S. PubMed ID: 1962571
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Candida albicans GRX2, encoding a putative glutaredoxin, is required for virulence in a murine model.
    Chaves GM; Bates S; Maccallum DM; Odds FC
    Genet Mol Res; 2007 Oct; 6(4):1051-63. PubMed ID: 18273798
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Putative D-Arabinono-1,4-lactone Oxidase, MoAlo1, Is Required for Fungal Growth, Conidiogenesis, and Pathogenicity in
    Wu MH; Huang LY; Sun LX; Qian H; Wei YY; Liang S; Zhu XM; Li L; Lu JP; Lin FC; Liu XH
    J Fungi (Basel); 2022 Jan; 8(1):. PubMed ID: 35050012
    [No Abstract]   [Full Text] [Related]  

  • 39. Biosynthesis of L-ascorbic acid (vitamin C) by Saccharomyces cerevisiae.
    Hancock RD; Galpin JR; Viola R
    FEMS Microbiol Lett; 2000 May; 186(2):245-50. PubMed ID: 10802179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Random nucleotide substitutions in primate nonfunctional gene for L-gulono-gamma-lactone oxidase, the missing enzyme in L-ascorbic acid biosynthesis.
    Ohta Y; Nishikimi M
    Biochim Biophys Acta; 1999 Oct; 1472(1-2):408-11. PubMed ID: 10572964
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.