These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 11349819)

  • 1. Very empirical treatment of solvation and entropy: a force field derived from log Po/w.
    Kellogg GE; Burnett JC; Abraham DJ
    J Comput Aided Mol Des; 2001 Apr; 15(4):381-93. PubMed ID: 11349819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrophobicity: is LogP(o/w) more than the sum of its parts?
    Eugene Kellogg G; Abraham DJ
    Eur J Med Chem; 2000; 35(7-8):651-61. PubMed ID: 10960181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing protein dimerizers: the importance of ligand conformational equilibria.
    Carlson JC; Kanter A; Thuduppathy GR; Cody V; Pineda PE; McIvor RS; Wagner CR
    J Am Chem Soc; 2003 Feb; 125(6):1501-7. PubMed ID: 12568609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the energetics of water-protein and water-ligand interactions with the "natural" HINT forcefield: predictive tools for characterizing the roles of water in biomolecules.
    Amadasi A; Spyrakis F; Cozzini P; Abraham DJ; Kellogg GE; Mozzarelli A
    J Mol Biol; 2006 Apr; 358(1):289-309. PubMed ID: 16497327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetics of the protein-DNA-water interaction.
    Spyrakis F; Cozzini P; Bertoli C; Marabotti A; Kellogg GE; Mozzarelli A
    BMC Struct Biol; 2007 Jan; 7():4. PubMed ID: 17214883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the importance of hydrophobic interactions in drug binding to dihydrofolate reductase.
    Taira K; Benkovic SJ
    J Med Chem; 1988 Jan; 31(1):129-37. PubMed ID: 3275776
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tools for building a comprehensive modeling system for virtual screening under real biological conditions: The Computational Titration algorithm.
    Kellogg GE; Fornabaio M; Chen DL; Abraham DJ; Spyrakis F; Cozzini P; Mozzarelli A
    J Mol Graph Model; 2006 May; 24(6):434-9. PubMed ID: 16236534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory and normal-mode analysis of change in protein vibrational dynamics on ligand binding.
    Moritsugu K; Njunda BM; Smith JC
    J Phys Chem B; 2010 Jan; 114(3):1479-85. PubMed ID: 20043649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemically induced dimerization of dihydrofolate reductase by a homobifunctional dimer of methotrexate.
    Kopytek SJ; Standaert RF; Dyer JC; Hu JC
    Chem Biol; 2000 May; 7(5):313-21. PubMed ID: 10801470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Characterization of Dihydrofolate Reductase Complexes by Top-Down Ultraviolet Photodissociation Mass Spectrometry.
    Cammarata MB; Thyer R; Rosenberg J; Ellington A; Brodbelt JS
    J Am Chem Soc; 2015 Jul; 137(28):9128-35. PubMed ID: 26125523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadditivity of mutational effects at the folate binding site of Escherichia coli dihydrofolate reductase.
    Huang Z; Wagner CR; Benkovic SJ
    Biochemistry; 1994 Sep; 33(38):11576-85. PubMed ID: 7918371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 15N NMR studies of the conformation of E. coli dihydrofolate reductase in complex with folate or methotrexate.
    Huang FY; Yang QX; Huang TH
    FEBS Lett; 1991 Sep; 289(2):231-4. PubMed ID: 1915851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A blind SAMPL6 challenge: insight into the octanol-water partition coefficients of drug-like molecules via a DFT approach.
    Arslan E; Findik BK; Aviyente V
    J Comput Aided Mol Des; 2020 Apr; 34(4):463-470. PubMed ID: 31939104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics and kinetics of ligand-protein binding studied with the weighted histogram analysis method and simulated annealing.
    Bouzida D; Arthurs S; Colson AB; Freer ST; Gehlhaar DK; Larson V; Luty BA; Rejto PA; Rose PW; Verkhivker GM
    Pac Symp Biocomput; 1999; ():426-37. PubMed ID: 10380216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics.
    Rajagopalan PT; Zhang Z; McCourt L; Dwyer M; Benkovic SJ; Hammes GG
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13481-6. PubMed ID: 12359872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coordination of the isomerization of a conserved non-prolyl cis peptide bond with the rate-limiting steps in the folding of dihydrofolate reductase.
    Svensson AK; O'Neill JC; Matthews CR
    J Mol Biol; 2003 Feb; 326(2):569-83. PubMed ID: 12559923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A free-energy perturbation study of the binding of methotrexate to mutants of dihydrofolate reductase.
    Singh UC; Benkovic SJ
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9519-23. PubMed ID: 3200837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 13C NMR studies of complexes of Escherichia coli dihydrofolate reductase formed with methotrexate and with folic acid.
    Cheung HT; Birdsall B; Feeney J
    FEBS Lett; 1992 Nov; 312(2-3):147-51. PubMed ID: 1426244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutron diffraction studies of Escherichia coli dihydrofolate reductase complexed with methotrexate.
    Bennett B; Langan P; Coates L; Mustyakimov M; Schoenborn B; Howell EE; Dealwis C
    Proc Natl Acad Sci U S A; 2006 Dec; 103(49):18493-8. PubMed ID: 17130456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the salt bridge in the dihydrofolate reductase-methotrexate complex by using the coordinate-coupled free-energy perturbation method.
    Singh UC
    Proc Natl Acad Sci U S A; 1988 Jun; 85(12):4280-4. PubMed ID: 3380791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.