These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 11349845)

  • 1. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM; Young LY
    Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interrogation of Chesapeake Bay sediment microbial communities for intrinsic alkane-utilizing potential under anaerobic conditions.
    Johnson JM; Wawrik B; Isom C; Boling WB; Callaghan AV
    FEMS Microbiol Ecol; 2015 Feb; 91(2):1-14. PubMed ID: 25764556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of anaerobic microbial processes in chlorobenzoate degradation: nitrate, iron, sulfate and carbonate as electron acceptors.
    Kazumi J; Häggblom MM; Young LY
    Appl Microbiol Biotechnol; 1995 Oct; 43(5):929-36. PubMed ID: 7576560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.
    Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M
    FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic biodegradation of nonylphenol in river sediment under nitrate- or sulfate-reducing conditions and associated bacterial community.
    Wang Z; Yang Y; Dai Y; Xie S
    J Hazard Mater; 2015 Apr; 286():306-14. PubMed ID: 25590825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Jul; 65(7):2969-76. PubMed ID: 10388691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic Degradation of Non-Methane Alkanes by "
    Laso-Pérez R; Hahn C; van Vliet DM; Tegetmeyer HE; Schubotz F; Smit NT; Pape T; Sahling H; Bohrmann G; Boetius A; Knittel K; Wegener G
    mBio; 2019 Aug; 10(4):. PubMed ID: 31431553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of quinone-reducing microorganisms to the anaerobic biodegradation of organic compounds under different redox conditions.
    Cervantes FJ; Gutiérrez CH; López KY; Estrada-Alvarado MI; Meza-Escalante ER; Texier AC; Cuervo F; Gómez J
    Biodegradation; 2008 Apr; 19(2):235-46. PubMed ID: 17534721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.
    Hasinger M; Scherr KE; Lundaa T; Bräuer L; Zach C; Loibner AP
    J Biotechnol; 2012 Feb; 157(4):490-8. PubMed ID: 22001845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments.
    Coates JD; Woodward J; Allen J; Philp P; Lovley DR
    Appl Environ Microbiol; 1997 Sep; 63(9):3589-93. PubMed ID: 9341091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.
    Savage KN; Krumholz LR; Gieg LM; Parisi VA; Suflita JM; Allen J; Philp RP; Elshahed MS
    FEMS Microbiol Ecol; 2010 Jun; 72(3):485-95. PubMed ID: 20402777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacteria from hydrocarbon seep areas growing on short-chain alkanes.
    Muyzer G; van der Kraan GM
    Trends Microbiol; 2008 Apr; 16(4):138-41. PubMed ID: 18328711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment.
    Yang S; Yoshida N; Baba D; Katayama A
    Chemosphere; 2008 Mar; 71(2):328-36. PubMed ID: 17950776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of nonylphenol polyethoxylates under sulfate-reducing conditions.
    Lu J; Jin Q; He Y; Wu J; Zhao J
    Sci Total Environ; 2008 Jul; 399(1-3):121-7. PubMed ID: 18485451
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing and sustaining 3-chlorophenol-degrading populations in up-flow anaerobic column reactors under circum-denitrifying conditions.
    Bae HS; Yamagishi T; Suwa Y
    Appl Microbiol Biotechnol; 2002 Jun; 59(1):118-24. PubMed ID: 12073142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan.
    Yuan SY; Chang BV
    J Environ Sci Health B; 2007 Jan; 42(1):63-9. PubMed ID: 17162569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial Response to Experimentally Controlled Redox Transitions at the Sediment Water Interface.
    Frindte K; Allgaier M; Grossart HP; Eckert W
    PLoS One; 2015; 10(11):e0143428. PubMed ID: 26599000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.