These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11349998)

  • 1. Determination of the regression rate of a fast moving solid/liquid interface using ultrasonics.
    Chiffoleau GJ; Steinberg TA; Veidt M; Stickley GF
    Ultrasonics; 2001 Apr; 39(3):173-80. PubMed ID: 11349998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reflection of structural waves at a solid/liquid interface.
    Chiffoleau GJ; Steinberg TA; Veidt M
    Ultrasonics; 2003 Jul; 41(5):347-56. PubMed ID: 12788216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete ultrasonic transducer characterization and its use for models and measurements.
    Schmerr LW; Lopez-Sanchez A; Huang R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e753-7. PubMed ID: 16797047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of an ultrasonic transducer's sensitivity and impedance in a pulse-echo setup.
    Lopez-Sanchez AL; Schmerr LW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Nov; 53(11):2101-12. PubMed ID: 17091845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An improvement in the range resolution of ultrasonic pulse echo systems by deconvolution.
    Carpenter RN; Stepanishen PR
    J Acoust Soc Am; 1984 Apr; 75(4):1084-91. PubMed ID: 6725762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters.
    Viumdal H; Mylvaganam S
    Ultrasonics; 2014 Mar; 54(3):894-904. PubMed ID: 24268177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robotic Ultrasonic Measurement of Residual Stress in Complex Curved Surface Components.
    Pan Q; Shao C; Xiao D; Pan R; Liu X; Song W
    Appl Bionics Biomech; 2019; 2019():2797896. PubMed ID: 30944581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [A device for measuring the burning rate of light and thin homogeneous solid under low barometric pressure and in enriched oxygen].
    Cheng H; Sun X; Zhu Y; Deng W; Lin Z; Liu T
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):855-8. PubMed ID: 23198421
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noninvasive respiratory monitoring system based on the piezoceramic transducer's pyroelectric effect.
    Huang YP; Young MS; Tai CC
    Rev Sci Instrum; 2008 Mar; 79(3):035103. PubMed ID: 18377041
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic Technique for Density Measurement of Liquids in Extreme Conditions.
    Kazys R; Sliteris R; Rekuviene R; Zukauskas E; Mazeika L
    Sensors (Basel); 2015 Aug; 15(8):19393-415. PubMed ID: 26262619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental measurement of the acousto-electric interaction signal in saline solution.
    Lavandier B; Jossinet J; Cathignol D
    Ultrasonics; 2000 Sep; 38(9):929-36. PubMed ID: 11012016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple method for measuring vibration amplitude of high power airborne ultrasonic transducer: using thermo-couple.
    Saffar S; Abdullah A
    Ultrasonics; 2014 Mar; 54(3):821-5. PubMed ID: 24246149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive measurement of lubricating oil viscosity using an ultrasonic continuously repeated chirp shear wave.
    Manfredi OF; Mills RS; Schirru MM; Dwyer-Joyce RS
    Ultrasonics; 2019 Apr; 94():332-339. PubMed ID: 30177282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic interferometry: study of particle sedimentation in liquid.
    Razavian SM; Boynard M; Guillet R; Bertholom P; Beuzard Y
    IEEE Trans Biomed Eng; 1991 Aug; 38(8):727-34. PubMed ID: 1937505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic density sensor for liquids.
    Puttmer A; Hauptmann P; Henning B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(1):85-92. PubMed ID: 18238520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffuse ultrasonic backscatter at normal incidence through a curved interface.
    Ghoshal G; Turner JA
    J Acoust Soc Am; 2010 Dec; 128(6):3449-58. PubMed ID: 21218878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of blind zone for in situ monitoring the solid/liquid interface using ultrasonic wave.
    Peng S; Ouyang Q; Zhu ZZ; Zhang XL
    Ultrasonics; 2015 Jul; 60():82-7. PubMed ID: 25783779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode conversion of Rayleigh and Lamb waves to compression waves at a metal-liquid interface.
    Deighton MO; Gillespie AB; Pike RB; Watkins RD
    Ultrasonics; 1981 Nov; 19(6):249-58. PubMed ID: 7292773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasonic field modeling by distributed point source method for different transducer boundary conditions.
    Yanagita T; Kundu T; Placko D
    J Acoust Soc Am; 2009 Nov; 126(5):2331-9. PubMed ID: 19894816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.