These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 11350259)

  • 1. Rate-dependent electrical, contractile and restitution properties of isolated left ventricular myocytes in guinea-pig hypertrophy.
    Davey P; Bryant S; Hart G
    Acta Physiol Scand; 2001 Jan; 171(1):17-28. PubMed ID: 11350259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regional differences in electrical and mechanical properties of myocytes from guinea-pig hearts with mild left ventricular hypertrophy.
    Bryant SM; Shipsey SJ; Hart G
    Cardiovasc Res; 1997 Aug; 35(2):315-23. PubMed ID: 9349394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cell length consequent on depolarization in single left ventricular myocytes from guinea-pigs with pressure-overload left ventricular hypertrophy.
    Ryder KO; Bryant SM; Hart G
    Proc Biol Sci; 1993 Jul; 253(1336):35-42. PubMed ID: 8396776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Myocardial structural, contractile and electrophysiological changes in the guinea-pig heart failure model induced by chronic sympathetic activation.
    Soltysinska E; Olesen SP; Osadchii OE
    Exp Physiol; 2011 Jul; 96(7):647-63. PubMed ID: 21571815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The contractile and electrophysiological effects of rolipram in guinea-pig papillary muscles and isolated ventricular myocytes.
    Mörner SE; Arlock P
    Acta Physiol Scand; 1994 Feb; 150(2):117-24. PubMed ID: 8191890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical restitution in diseased human ventricular myocardium.
    Nánási PP; Varró A; Pankucsi C; Homolay P; Knilans TK; Kovács L; Papp GJ; Lathrop DA
    Clin Physiol; 1996 Jul; 16(4):339-51. PubMed ID: 8842570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular calcium and electrical restitution in mammalian cardiac cells.
    Szigligeti P; Bányász T; Magyar J; Szigeti G; Papp Z; Varró A; Nánási PP
    Acta Physiol Scand; 1998 Jun; 163(2):139-47. PubMed ID: 9648632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of mitoxantrone on excitation-contraction coupling in guinea pig ventricular myocytes.
    Wang GX; Zhou XB; Korth M
    J Pharmacol Exp Ther; 2000 May; 293(2):501-8. PubMed ID: 10773021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rate-dependent changes in action potential duration and membrane currents in hamster ventricular myocytes.
    Kocic I; Hirano Y; Hiraoka M
    Pflugers Arch; 2002 Jan; 443(3):353-61. PubMed ID: 11810203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of subrenal banding of the abdominal aorta as a method of inducing cardiac hypertrophy in the guinea pig.
    Tweedie D; Henderson CG; Kane KA
    Cardioscience; 1995 Jun; 6(2):115-9. PubMed ID: 7578908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transmural L-type calcium current in a pressure-overloaded mouse model with heart failure].
    Shi CX; Wang YH; Dong F; Zhang YJ; Xu YF
    Sheng Li Xue Bao; 2007 Feb; 59(1):19-26. PubMed ID: 17294038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-clamp characteristics of ventricular myocytes in rabbit.
    Varró A; Nánási PP; Lathrop DA
    Cardioscience; 1991 Dec; 2(4):233-43. PubMed ID: 1662086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of duration of depolarisation on contraction of normal and hypertrophied feline ventricular myocytes.
    Nuss HB; Houser SR
    Cardiovasc Res; 1994 Oct; 28(10):1482-9. PubMed ID: 8001035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prolongation of the QT interval in heart failure occurs at low but not at high heart rates.
    Davey PP; Barlow C; Hart G
    Clin Sci (Lond); 2000 May; 98(5):603-10. PubMed ID: 10781393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restricting excessive cardiac action potential and QT prolongation: a vital role for IKs in human ventricular muscle.
    Jost N; Virág L; Bitay M; Takács J; Lengyel C; Biliczki P; Nagy Z; Bogáts G; Lathrop DA; Papp JG; Varró A
    Circulation; 2005 Sep; 112(10):1392-9. PubMed ID: 16129791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal patterns of electrical remodeling in canine ventricular hypertrophy: focus on IKs downregulation and blunted beta-adrenergic activation.
    Stengl M; Ramakers C; Donker DW; Nabar A; Rybin AV; Spätjens RL; van der Nagel T; Wodzig WK; Sipido KR; Antoons G; Moorman AF; Vos MA; Volders PG
    Cardiovasc Res; 2006 Oct; 72(1):90-100. PubMed ID: 16934787
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical restitution of isolated human ventricular myocardium subjected to in vivo pressure and volume overload.
    Cooper IC; Fry CH; Webb-Peploe MM
    Cardiovasc Res; 1992 Oct; 26(10):978-82. PubMed ID: 1486592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties of ventricular myocytes isolated from the hypertrophied and failing hearts of spontaneously hypertensive rats.
    Emanuel K; Mackiewicz U; Pytkowski B; Lewartowski B
    J Physiol Pharmacol; 1999 Jun; 50(2):243-58. PubMed ID: 10424720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal variability of repolarization in rat ventricular myocytes paced with time-varying frequencies.
    Zaniboni M; Cacciani F; Salvarani N
    Exp Physiol; 2007 Sep; 92(5):859-69. PubMed ID: 17573414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: role of intracellular sodium in rest-dependent potentiation of contraction.
    Mubagwa K; Lin W; Sipido K; Bosteels S; Flameng W
    J Mol Cell Cardiol; 1997 Mar; 29(3):977-89. PubMed ID: 9152859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.