These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 11350933)
1. Quality control of transmembrane domain assembly in the tetraspanin CD82. Cannon KS; Cresswell P EMBO J; 2001 May; 20(10):2443-53. PubMed ID: 11350933 [TBL] [Abstract][Full Text] [Related]
2. Transient, lectin-like association of calreticulin with folding intermediates of cellular and viral glycoproteins. Peterson JR; Ora A; Van PN; Helenius A Mol Biol Cell; 1995 Sep; 6(9):1173-84. PubMed ID: 8534914 [TBL] [Abstract][Full Text] [Related]
3. The number and location of glycans on influenza hemagglutinin determine folding and association with calnexin and calreticulin. Hebert DN; Zhang JX; Chen W; Foellmer B; Helenius A J Cell Biol; 1997 Nov; 139(3):613-23. PubMed ID: 9348279 [TBL] [Abstract][Full Text] [Related]
4. Biosynthesis of inositol trisphosphate receptors: selective association with the molecular chaperone calnexin. Joseph SK; Boehning D; Bokkala S; Watkins R; Widjaja J Biochem J; 1999 Aug; 342 ( Pt 1)(Pt 1):153-61. PubMed ID: 10432312 [TBL] [Abstract][Full Text] [Related]
5. The related molecular chaperones calnexin and calreticulin differentially associate with nascent T cell antigen receptor proteins within the endoplasmic reticulum. Van Leeuwen JE; Kearse KP J Biol Chem; 1996 Oct; 271(41):25345-9. PubMed ID: 8810299 [TBL] [Abstract][Full Text] [Related]
6. Chaperone function of calreticulin when expressed in the endoplasmic reticulum as the membrane-anchored and soluble forms. Wada I; Imai S; Kai M; Sakane F; Kanoh H J Biol Chem; 1995 Sep; 270(35):20298-304. PubMed ID: 7657600 [TBL] [Abstract][Full Text] [Related]
7. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Molinari M; Helenius A Science; 2000 Apr; 288(5464):331-3. PubMed ID: 10764645 [TBL] [Abstract][Full Text] [Related]
8. Rubella virus glycoprotein interaction with the endoplasmic reticulum calreticulin and calnexin. Nakhasi HL; Ramanujam M; Atreya CD; Hobman TC; Lee N; Esmaili A; Duncan RC Arch Virol; 2001; 146(1):1-14. PubMed ID: 11266204 [TBL] [Abstract][Full Text] [Related]
9. Localization of the lectin, ERp57 binding, and polypeptide binding sites of calnexin and calreticulin. Leach MR; Cohen-Doyle MF; Thomas DY; Williams DB J Biol Chem; 2002 Aug; 277(33):29686-97. PubMed ID: 12052826 [TBL] [Abstract][Full Text] [Related]
10. Folding of insulin receptor monomers is facilitated by the molecular chaperones calnexin and calreticulin and impaired by rapid dimerization. Bass J; Chiu G; Argon Y; Steiner DF J Cell Biol; 1998 May; 141(3):637-46. PubMed ID: 9566965 [TBL] [Abstract][Full Text] [Related]
11. Distinct patterns of folding and interactions with calnexin and calreticulin in human class I MHC proteins with altered N-glycosylation. Zhang Q; Salter RD J Immunol; 1998 Jan; 160(2):831-7. PubMed ID: 9551918 [TBL] [Abstract][Full Text] [Related]
12. Role of calnexin in the glycan-independent quality control of proteolipid protein. Swanton E; High S; Woodman P EMBO J; 2003 Jun; 22(12):2948-58. PubMed ID: 12805210 [TBL] [Abstract][Full Text] [Related]
13. Export of the high affinity IgE receptor from the endoplasmic reticulum depends on a glycosylation-mediated quality control mechanism. Albrecht B; Woisetschläger M; Robertson MW J Immunol; 2000 Nov; 165(10):5686-94. PubMed ID: 11067926 [TBL] [Abstract][Full Text] [Related]
14. Functional relationship between calreticulin, calnexin, and the endoplasmic reticulum luminal domain of calnexin. Danilczyk UG; Cohen-Doyle MF; Williams DB J Biol Chem; 2000 Apr; 275(17):13089-97. PubMed ID: 10777614 [TBL] [Abstract][Full Text] [Related]
15. Calnexin, calreticulin, and Bip/Kar2p in protein folding. Hebert DN; Simons JF; Peterson JR; Helenius A Cold Spring Harb Symp Quant Biol; 1995; 60():405-15. PubMed ID: 8824414 [No Abstract] [Full Text] [Related]
16. Protein glucosylation and its role in protein folding. Parodi AJ Annu Rev Biochem; 2000; 69():69-93. PubMed ID: 10966453 [TBL] [Abstract][Full Text] [Related]
17. Mutations in the carboxyl-terminal hydrophobic sequence of human cytomegalovirus glycoprotein B alter transport and protein chaperone binding. Zheng Z; Maidji E; Tugizov S; Pereira L J Virol; 1996 Nov; 70(11):8029-40. PubMed ID: 8892927 [TBL] [Abstract][Full Text] [Related]
18. Promotion of transferrin folding by cyclic interactions with calnexin and calreticulin. Wada I; Kai M; Imai S; Sakane F; Kanoh H EMBO J; 1997 Sep; 16(17):5420-32. PubMed ID: 9312001 [TBL] [Abstract][Full Text] [Related]
19. N-linked oligosaccharides are necessary and sufficient for association of glycosylated forms of bovine RNase with calnexin and calreticulin. Rodan AR; Simons JF; Trombetta ES; Helenius A EMBO J; 1996 Dec; 15(24):6921-30. PubMed ID: 9003768 [TBL] [Abstract][Full Text] [Related]
20. Calnexin can interact with N-linked glycans located close to the endoplasmic reticulum membrane. Andersson H; Nilsson I; von Heijne G FEBS Lett; 1996 Nov; 397(2-3):321-4. PubMed ID: 8955372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]