BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 11351009)

  • 21. The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors.
    Tegnér J; Matsushima T; el Manira A; Grillner S
    J Neurophysiol; 1993 Mar; 69(3):647-57. PubMed ID: 8385187
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential effects of the reticulospinal system on locomotion in lamprey.
    Wannier T; Deliagina TG; Orlovsky GN; Grillner S
    J Neurophysiol; 1998 Jul; 80(1):103-12. PubMed ID: 9658032
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The spinal GABAergic system is a strong modulator of burst frequency in the lamprey locomotor network.
    Schmitt DE; Hill RH; Grillner S
    J Neurophysiol; 2004 Oct; 92(4):2357-67. PubMed ID: 15190090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts.
    Hill R; Matsushima T; Schotland J; Grillner S
    Neuroreport; 1992 Oct; 3(10):943-5. PubMed ID: 1421104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fast and slow locomotor burst generation in the hemispinal cord of the lamprey.
    Cangiano L; Grillner S
    J Neurophysiol; 2003 Jun; 89(6):2931-42. PubMed ID: 12611971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Activity-dependent modulation of adaptation produces a constant burst proportion in a model of the lamprey spinal locomotor generator.
    Ullström M; Kotaleski JH; Tegnér J; Aurell E; Grillner S; Lansner A
    Biol Cybern; 1998 Jul; 79(1):1-14. PubMed ID: 9742673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks.
    Tråvén HG; Brodin L; Lansner A; Ekeberg O; Wallén P; Grillner S
    J Neurophysiol; 1993 Aug; 70(2):695-709. PubMed ID: 8105036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The roles of spinal interneurons and motoneurons in the lamprey locomotor network.
    Buchanan JT
    Prog Brain Res; 1999; 123():311-21. PubMed ID: 10635726
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of the spinal neuronal circuitry underlying locomotion in a lower vertebrate.
    Lansner A; Kotaleski JH; Grillner S
    Ann N Y Acad Sci; 1998 Nov; 860():239-49. PubMed ID: 9928316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different forms of locomotion in the spinal lamprey.
    Hsu LJ; Orlovsky GN; Zelenin PV
    Eur J Neurosci; 2014 Jun; 39(12):2037-49. PubMed ID: 24641591
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Initiation of locomotion in lampreys.
    Dubuc R; Brocard F; Antri M; Fénelon K; Gariépy JF; Smetana R; Ménard A; Le Ray D; Viana Di Prisco G; Pearlstein E; Sirota MG; Derjean D; St-Pierre M; Zielinski B; Auclair F; Veilleux D
    Brain Res Rev; 2008 Jan; 57(1):172-82. PubMed ID: 17916380
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey.
    Davis GR; McClellan AD
    J Comp Neurol; 1994 Jun; 344(1):65-82. PubMed ID: 8063956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of flufenamic acid on fictive locomotion, plateau potentials, calcium channels and NMDA receptors in the lamprey spinal cord.
    Wang D; Grillner S; Wallén P
    Neuropharmacology; 2006 Nov; 51(6):1038-46. PubMed ID: 16919683
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dopaminergic modulation of spinal neurons and synaptic potentials in the lamprey spinal cord.
    Kemnitz CP
    J Neurophysiol; 1997 Jan; 77(1):289-98. PubMed ID: 9120571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ion channels and locomotion.
    Grillner S
    Science; 1997 Nov; 278(5340):1087-8. PubMed ID: 9381205
    [No Abstract]   [Full Text] [Related]  

  • 36. Functional regeneration of descending brainstem command pathways for locomotion demonstrated in the in vitro lamprey CNS.
    McClellan AD
    Brain Res; 1988 May; 448(2):339-45. PubMed ID: 3378155
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimentally derived model for the locomotor pattern generator in the Xenopus embryo.
    Dale N
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):489-510. PubMed ID: 8847642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Activation of 'fictive swimming' by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system.
    McClellan AD; Grillner S
    Brain Res; 1984 May; 300(2):357-61. PubMed ID: 6733478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the spinal generation of locomotion, with particular reference to a simple vertebrate: the lamprey.
    Grillner S; McClellan A; Sigvardt K; Wallén P
    Birth Defects Orig Artic Ser; 1983; 19(4):347-56. PubMed ID: 6135460
    [No Abstract]   [Full Text] [Related]  

  • 40. 5-HT and dopamine modulates CaV1.3 calcium channels involved in postinhibitory rebound in the spinal network for locomotion in lamprey.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2011 Mar; 105(3):1212-24. PubMed ID: 21228305
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.