These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 11351009)

  • 41. A Brainstem Neural Substrate for Stopping Locomotion.
    Grätsch S; Auclair F; Demers O; Auguste E; Hanna A; Büschges A; Dubuc R
    J Neurosci; 2019 Feb; 39(6):1044-1057. PubMed ID: 30541913
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The spinobulbar system in lamprey.
    Buchanan JT; Einum JF
    Brain Res Rev; 2008 Jan; 57(1):37-45. PubMed ID: 17716741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regeneration of locomotor command systems in the sea lamprey.
    Currie SN; Ayers J
    Brain Res; 1983 Nov; 279(1-2):238-40. PubMed ID: 6640343
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of excitatory amino acids in brainstem activation of spinal locomotor networks in larval lamprey.
    Hagevik A; McClellan AD
    Brain Res; 1994 Feb; 636(1):147-52. PubMed ID: 7908851
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.I. Segmental oscillations dependent on reciprocal inhibition.
    Kotaleski JH; Grillner S; Lansner A
    Biol Cybern; 1999 Oct; 81(4):317-30. PubMed ID: 10541935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural mechanisms potentially contributing to the intersegmental phase lag in lamprey.II. Hemisegmental oscillations produced by mutually coupled excitatory neurons.
    Kotaleski JH; Lansner A; Grillner S
    Biol Cybern; 1999 Oct; 81(4):299-315. PubMed ID: 10541934
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of a high-voltage-activated IA current with a role in spike timing and locomotor pattern generation.
    Hess D; El Manira A
    Proc Natl Acad Sci U S A; 2001 Apr; 98(9):5276-81. PubMed ID: 11309504
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Neurobiological bases of rhythmic motor acts in vertebrates.
    Grillner S
    Science; 1985 Apr; 228(4696):143-9. PubMed ID: 3975635
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity.
    Messina JA; St Paul A; Hargis S; Thompson WE; McClellan AD
    Front Neural Circuits; 2017; 11():89. PubMed ID: 29225569
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Quantitative investigation of calcium signals for locomotor pattern generation in the lamprey spinal cord.
    Viana di Prisco G; Alford S
    J Neurophysiol; 2004 Sep; 92(3):1796-806. PubMed ID: 15140901
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.
    Wang D; Grillner S; Wallén P
    J Neurophysiol; 2014 Jul; 112(1):30-8. PubMed ID: 24740857
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modulation of burst frequency by calcium-dependent potassium channels in the lamprey locomotor system: dependence of the activity level.
    Tegnér J; Lansner A; Grillner S
    J Comput Neurosci; 1998 May; 5(2):121-40. PubMed ID: 9617663
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Beyond connectivity of locomotor circuitry-ionic and modulatory mechanisms.
    El Manira A; Kyriakatos A; Nanou E
    Prog Brain Res; 2010; 187():99-110. PubMed ID: 21111203
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The activity of spinal commissural interneurons during fictive locomotion in the lamprey.
    Biró Z; Hill RH; Grillner S
    J Neurophysiol; 2008 Aug; 100(2):716-22. PubMed ID: 18509075
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The Spinal Cord Has an Intrinsic System for the Control of pH.
    Jalalvand E; Robertson B; Tostivint H; Wallén P; Grillner S
    Curr Biol; 2016 May; 26(10):1346-51. PubMed ID: 27133867
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Functional regeneration and restoration of locomotor activity following spinal cord transection in the lamprey.
    McClellan AD
    Prog Brain Res; 1994; 103():203-17. PubMed ID: 7886205
    [No Abstract]   [Full Text] [Related]  

  • 57. Calcium channel subtypes in lamprey sensory and motor neurons.
    El Manira A; Bussières N
    J Neurophysiol; 1997 Sep; 78(3):1334-40. PubMed ID: 9310424
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modifications of locomotor pattern underlying escape behavior in the lamprey.
    Islam SS; Zelenin PV
    J Neurophysiol; 2008 Jan; 99(1):297-307. PubMed ID: 18003880
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys.
    Hsu LJ; Zelenin PV; Orlovsky GN; Deliagina TG
    J Physiol; 2017 Feb; 595(3):883-900. PubMed ID: 27589479
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Sodium-dependent potassium channels of a Slack-like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons.
    Wallén P; Robertson B; Cangiano L; Löw P; Bhattacharjee A; Kaczmarek LK; Grillner S
    J Physiol; 2007 Nov; 585(Pt 1):75-90. PubMed ID: 17884929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.