These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 11351018)

  • 1. Neural prostheses.
    Prochazka A; Mushahwar VK; McCreery DB
    J Physiol; 2001 May; 533(Pt 1):99-109. PubMed ID: 11351018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bladder and urethral sphincter responses evoked by microstimulation of S2 sacral spinal cord in spinal cord intact and chronic spinal cord injured cats.
    Tai C; Booth AM; de Groat WC; Roppolo JR
    Exp Neurol; 2004 Nov; 190(1):171-83. PubMed ID: 15473990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implanted stimulators for restoration of function in spinal cord injury.
    Bhadra N; Kilgore KL; Peckham PH
    Med Eng Phys; 2001 Jan; 23(1):19-28. PubMed ID: 11344004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of urinary bladder function with devices: successes and failures.
    Gaunt RA; Prochazka A
    Prog Brain Res; 2006; 152():163-94. PubMed ID: 16198700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spinal cord microstimulation generates functional limb movements in chronically implanted cats.
    Mushahwar VK; Collins DF; Prochazka A
    Exp Neurol; 2000 Jun; 163(2):422-9. PubMed ID: 10833317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacing the body's own sensing receptors into neural prosthesis devices.
    Haugland M; Sinkjaer T
    Technol Health Care; 1999; 7(6):393-9. PubMed ID: 10665672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroprosthetic technology for individuals with spinal cord injury.
    Collinger JL; Foldes S; Bruns TM; Wodlinger B; Gaunt R; Weber DJ
    J Spinal Cord Med; 2013 Jul; 36(4):258-72. PubMed ID: 23820142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural prosthetic devices for quadriplegia.
    Chapin JK
    Curr Opin Neurol; 2000 Dec; 13(6):671-5. PubMed ID: 11148668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of bladder outlet resistance by selective stimulation of the ventral sacral root using high frequency blockade: a chronic study in spinal cord transected dogs.
    Abdel-Gawad M; Boyer S; Sawan M; Elhilali MM
    J Urol; 2001 Aug; 166(2):728-33. PubMed ID: 11458125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a battery-free ultrasonically powered functional electrical stimulator for movement restoration after paralyzing spinal cord injury.
    Alam M; Li S; Ahmed RU; Yam YM; Thakur S; Wang XY; Tang D; Ng S; Zheng YP
    J Neuroeng Rehabil; 2019 Mar; 16(1):36. PubMed ID: 30850027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury.
    Tator CH; Minassian K; Mushahwar VK
    Handb Clin Neurol; 2012; 109():283-96. PubMed ID: 23098720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bladder inhibition or voiding induced by pudendal nerve stimulation in chronic spinal cord injured cats.
    Tai C; Wang J; Wang X; de Groat WC; Roppolo JR
    Neurourol Urodyn; 2007; 26(4):570-577. PubMed ID: 17304521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Does patterned afferent stimulation of sacral dermatomes suppress urethral sphincter reflexes in individuals with spinal cord injury?
    McCoin JL; Bhadra N; Brose SW; Gustafson KJ
    Neurourol Urodyn; 2015 Mar; 34(3):219-23. PubMed ID: 24510801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phase relation changes between the firings of alpha and gamma-motoneurons and muscle spindle afferents in the sacral micturition centre during continence functions in brain-dead human and patients with spinal cord injury.
    Schalow G
    Electromyogr Clin Neurophysiol; 2010; 50(1):3-27. PubMed ID: 20349554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Functional rehabilitation of spinal cord injured persons using neuroprostheses].
    Rupp R; Abel R
    Orthopade; 2005 Feb; 34(2):144-51. PubMed ID: 15650822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epidural and transcutaneous spinal electrical stimulation for restoration of movement after incomplete and complete spinal cord injury.
    Mayr W; Krenn M; Dimitrijevic MR
    Curr Opin Neurol; 2016 Dec; 29(6):721-726. PubMed ID: 27798422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: a multicenter trial.
    Creasey GH; Grill JH; Korsten M; U HS; Betz R; Anderson R; Walter J;
    Arch Phys Med Rehabil; 2001 Nov; 82(11):1512-9. PubMed ID: 11689969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical stimulation for the treatment of bladder dysfunction: current status and future possibilities.
    Jezernik S; Craggs M; Grill WM; Creasey G; Rijkhoff NJ
    Neurol Res; 2002 Jul; 24(5):413-30. PubMed ID: 12117310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-total functional recovery achieved in partial cervical spinal cord injury (50% injury) after 3 years of coordination dynamics therapy.
    Schalow G; Jaigma P; Belle VK
    Electromyogr Clin Neurophysiol; 2009; 49(2-3):67-91. PubMed ID: 19400403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical stimulation in spinal cord injury.
    Sadowsky CL
    NeuroRehabilitation; 2001; 16(3):165-9. PubMed ID: 11790901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.