BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 11351028)

  • 1. Alterations in action potential profile enhance excitation-contraction coupling in rat cardiac myocytes.
    Sah R; Ramirez RJ; Kaprielian R; Backx PH
    J Physiol; 2001 May; 533(Pt 1):201-14. PubMed ID: 11351028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells.
    Hüser J; Wang YG; Sheehan KA; Cifuentes F; Lipsius SL; Blatter LA
    J Physiol; 2000 May; 524 Pt 3(Pt 3):795-806. PubMed ID: 10790159
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation.
    Janczewski AM; Spurgeon HA; Lakatta EG
    J Mol Cell Cardiol; 2002 Jun; 34(6):641-8. PubMed ID: 12054851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenteric lymph from rats with thermal injury prolongs the action potential and increases Ca2+ transient in rat ventricular myocytes.
    Yatani A; Xu DZ; Kim SJ; Vatner SF; Deitch EA
    Shock; 2003 Nov; 20(5):458-64. PubMed ID: 14560111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship between K+ channel down-regulation and [Ca2+]i in rat ventricular myocytes following myocardial infarction.
    Kaprielian R; Wickenden AD; Kassiri Z; Parker TG; Liu PP; Backx PH
    J Physiol; 1999 May; 517 ( Pt 1)(Pt 1):229-45. PubMed ID: 10226162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium entry via Na/Ca exchange during the action potential directly contributes to contraction of failing human ventricular myocytes.
    Weisser-Thomas J; Piacentino V; Gaughan JP; Margulies K; Houser SR
    Cardiovasc Res; 2003 Mar; 57(4):974-85. PubMed ID: 12650875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the immunosupressant FK506 on excitation-contraction coupling and outward K+ currents in rat ventricular myocytes.
    duBell WH; Wright PA; Lederer WJ; Rogers TB
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):509-16. PubMed ID: 9218211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive beta2-adrenergic signalling enhances sarcoplasmic reticulum Ca2+ cycling to augment contraction in mouse heart.
    Zhou YY; Song LS; Lakatta EG; Xiao RP; Cheng H
    J Physiol; 1999 Dec; 521 Pt 2(Pt 2):351-61. PubMed ID: 10581307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release.
    Harris DM; Mills GD; Chen X; Kubo H; Berretta RM; Votaw VS; Santana LF; Houser SR
    Circ Res; 2005 Mar; 96(5):543-50. PubMed ID: 15705962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The late component of L-type calcium current during guinea-pig cardiac action potentials and its contribution to contraction.
    Linz KW; Meyer R
    Pflugers Arch; 1998 Oct; 436(5):679-88. PubMed ID: 9716700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Na(+)-Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes.
    Wasserstrom JA; Vites AM
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):529-42. PubMed ID: 8782114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Buffering of calcium influx by sarcoplasmic reticulum during the action potential in guinea-pig ventricular myocytes.
    Janczewski AM; Lakatta EG
    J Physiol; 1993 Nov; 471():343-63. PubMed ID: 8120810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of Ca(2+) release in cardiac myocytes by changes in repolarization rate: role of phase-1 action potential repolarization in excitation-contraction coupling.
    Sah R; Ramirez RJ; Backx PH
    Circ Res; 2002 Feb; 90(2):165-73. PubMed ID: 11834709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Na(+)-Ca2+ exchange in the infarcted heart. Implications for excitation-contraction coupling.
    Litwin SE; Bridge JH
    Circ Res; 1997 Dec; 81(6):1083-93. PubMed ID: 9400390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic modulation of excitation-contraction coupling by protein phosphatases in rat ventricular myocytes.
    duBell WH; Lederer WJ; Rogers TB
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):793-800. PubMed ID: 8799900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positive inotropic effect of ceramide in adult ventricular myocytes: mechanisms dissociated from its reduction in Ca2+ influx.
    Liu SJ; Kennedy RH
    Am J Physiol Heart Circ Physiol; 2003 Aug; 285(2):H735-44. PubMed ID: 12730052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of internal sodium and caesium on phasic contraction of patch-clamped rabbit ventricular myocytes.
    Levi AJ; Mitcheson JS; Hancox JC
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):1-19. PubMed ID: 8730578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-induced release of strontium ions from the sarcoplasmic reticulum of rat cardiac ventricular myocytes.
    Spencer CI; Berlin JR
    J Physiol; 1997 Nov; 504 ( Pt 3)(Pt 3):565-78. PubMed ID: 9401965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
    Bassani JW; Bassani RA; Bers DM
    J Physiol; 1994 Apr; 476(2):279-93. PubMed ID: 8046643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of endogenous cannabinoid anandamide on excitation-contraction coupling in rat ventricular myocytes.
    Al Kury LT; Voitychuk OI; Ali RM; Galadari S; Yang KH; Howarth FC; Shuba YM; Oz M
    Cell Calcium; 2014 Feb; 55(2):104-18. PubMed ID: 24472666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.