BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 11351127)

  • 1. Mitochondrial membrane potential in aging cells.
    Sugrue MM; Tatton WG
    Biol Signals Recept; 2001; 10(3-4):176-88. PubMed ID: 11351127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore.
    Hüser J; Blatter LA
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):311-7. PubMed ID: 10510294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced mitochondrial membrane potential and altered responsiveness of a mitochondrial membrane megachannel in p53-induced senescence.
    Sugrue MM; Wang Y; Rideout HJ; Chalmers-Redman RM; Tatton WG
    Biochem Biophys Res Commun; 1999 Jul; 261(1):123-30. PubMed ID: 10405334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial membrane potential modulates regulation of mitochondrial Ca2+ in rat ventricular myocytes.
    Saotome M; Katoh H; Satoh H; Nagasaka S; Yoshihara S; Terada H; Hayashi H
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1820-8. PubMed ID: 15563537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The intrinsic mitochondrial membrane potential (Deltapsim) is associated with steady-state mitochondrial activity and the extent to which colonic epithelial cells undergo butyrate-mediated growth arrest and apoptosis.
    Heerdt BG; Houston MA; Wilson AJ; Augenlicht LH
    Cancer Res; 2003 Oct; 63(19):6311-9. PubMed ID: 14559818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update.
    Ly JD; Grubb DR; Lawen A
    Apoptosis; 2003 Mar; 8(2):115-28. PubMed ID: 12766472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mitochondrion in cell death control: certainties and incognita.
    Loeffler M; Kroemer G
    Exp Cell Res; 2000 Apr; 256(1):19-26. PubMed ID: 10739647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusarial toxin-induced toxicity in cultured cells and in isolated mitochondria involves PTPC-dependent activation of the mitochondrial pathway of apoptosis.
    Bouaziz C; Martel C; Sharaf el dein O; Abid-Essefi S; Brenner C; Lemaire C; Bacha H
    Toxicol Sci; 2009 Aug; 110(2):363-75. PubMed ID: 19541794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane.
    Kushnareva YE; Sokolove PM
    Arch Biochem Biophys; 2000 Apr; 376(2):377-88. PubMed ID: 10775426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts.
    Liao XD; Wang XH; Jin HJ; Chen LY; Chen Q
    Cell Res; 2004 Feb; 14(1):16-26. PubMed ID: 15040886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial cytochrome c release is caspase-dependent and does not involve mitochondrial permeability transition in didemnin B-induced apoptosis.
    Grubb DR; Ly JD; Vaillant F; Johnson KL; Lawen A
    Oncogene; 2001 Jul; 20(30):4085-94. PubMed ID: 11494136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of caspases and of mitochondria in Fas ligation-induced eosinophil apoptosis: modulation by interleukin-5 and interferon-gamma.
    Létuvé S; Druilhe A; Grandsaigne M; Aubier M; Pretolani M
    J Leukoc Biol; 2001 Nov; 70(5):767-75. PubMed ID: 11698497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMDA receptor activation contributes to a portion of the decreased mitochondrial membrane potential and elevated intracellular free calcium in strain-injured neurons.
    Ahmed SM; Weber JT; Liang S; Willoughby KA; Sitterding HA; Rzigalinski BA; Ellis EF
    J Neurotrauma; 2002 Dec; 19(12):1619-29. PubMed ID: 12542862
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of cells with different mitochondrial membrane potential during apoptosis.
    Lugli E; Troiano L; Ferraresi R; Roat E; Prada N; Nasi M; Pinti M; Cooper EL; Cossarizza A
    Cytometry A; 2005 Nov; 68(1):28-35. PubMed ID: 16184612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time flow cytometry analysis of permeability transition in isolated mitochondria.
    Lecoeur H; Langonné A; Baux L; Rebouillat D; Rustin P; Prévost MC; Brenner C; Edelman L; Jacotot E
    Exp Cell Res; 2004 Mar; 294(1):106-17. PubMed ID: 14980506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria.
    Rotem R; Heyfets A; Fingrut O; Blickstein D; Shaklai M; Flescher E
    Cancer Res; 2005 Mar; 65(5):1984-93. PubMed ID: 15753398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. F1FO-ATPase activity and ATP dependence of mitochondrial energization in proximal tubules after hypoxia/reoxygenation.
    Feldkamp T; Kribben A; Weinberg JM
    J Am Soc Nephrol; 2005 Jun; 16(6):1742-51. PubMed ID: 15843467
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ammonia induces the mitochondrial permeability transition in primary cultures of rat astrocytes.
    Bai G; Rama Rao KV; Murthy CR; Panickar KS; Jayakumar AR; Norenberg MD
    J Neurosci Res; 2001 Dec; 66(5):981-91. PubMed ID: 11746427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-type-specific opening of the retinal ganglion cell mitochondrial permeability transition pore.
    Vrabec JP; Lieven CJ; Levin LA
    Invest Ophthalmol Vis Sci; 2003 Jun; 44(6):2774-82. PubMed ID: 12766086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous changes in mitochondrial membrane potential in cultured neurons.
    Buckman JF; Reynolds IJ
    J Neurosci; 2001 Jul; 21(14):5054-65. PubMed ID: 11438581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.