BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 11351422)

  • 1. Acute toxicity of (chloro-)catechols and (chloro-)catechol-copper combinations in Escherichia coli corresponds to their membrane toxicity in vitro.
    Schweigert N; Hunziker RW; Escher BI; Eggen RI
    Environ Toxicol Chem; 2001 Feb; 20(2):239-47. PubMed ID: 11351422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbonyl side-chain of catechol compounds is a key structure for the suppression of copper-associated oxidative DNA damage in vitro.
    Ando M; Nishida H; Nishino Y; Ohbayashi M; Ueda K; Okamoto Y; Kojima N
    Toxicol Lett; 2010 Dec; 199(3):213-7. PubMed ID: 20832456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microcalorimetric method for studying the toxic effect of different diphenol species on the growth of Escherichia coli.
    Chen H; Yao J; Wang Y; Tian L; Wang F; Djak A; Choi MM; Bramanti E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Apr; 42(5):613-20. PubMed ID: 17454368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals.
    Schweigert N; Zehnder AJ; Eggen RI
    Environ Microbiol; 2001 Feb; 3(2):81-91. PubMed ID: 11321547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From PCBs to highly toxic metabolites by the biphenyl pathway.
    Cámara B; Herrera C; González M; Couve E; Hofer B; Seeger M
    Environ Microbiol; 2004 Aug; 6(8):842-50. PubMed ID: 15250886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli.
    Rispoli F; Angelov A; Badia D; Kumar A; Seal S; Shah V
    J Hazard Mater; 2010 Aug; 180(1-3):212-6. PubMed ID: 20434839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detoxifying polyhalogenated catechols through a copper-chelating agent by forming stable and redox-inactive hydrogen-bonded complexes with an unusual perpendicular structure.
    Li Y; Huang CH; Liu YX; Mao L; Zhu BZ
    Chemistry; 2014 Sep; 20(40):13028-33. PubMed ID: 25125348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic cytotoxic effect of tetrachlorocatechol and sodium azide in Escherichia coli: toxicity, metabolism, and mechanistic aspects.
    Levy S; Chevion M
    Environ Toxicol Chem; 2009 Jul; 28(7):1380-9. PubMed ID: 19215148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytotoxicity of myeloperoxidase-activated catechols: oxidative injury to the red blood cell.
    van Zyl JM; Basson K; Kriegler A; van der Walt BJ
    Toxicology; 1991; 68(1):37-49. PubMed ID: 1651573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of catechols during positive ion electrospray mass spectrometric analysis: evidence for in-source oxidative dimerization.
    Sojo LE; Chahal N; Keller BO
    Rapid Commun Mass Spectrom; 2014 Oct; 28(20):2181-90. PubMed ID: 25178722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial plate assays and electrochemical methods: an efficient tandem for evaluating the ability of catechol-thioether metabolites of MDMA ("ecstasy") to induce toxic effects through redox-cycling.
    Felim A; Urios A; Neudörffer A; Herrera G; Blanco M; Largeron M
    Chem Res Toxicol; 2007 Apr; 20(4):685-93. PubMed ID: 17355154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophenols and chlorocatechols induce apoptosis in human lymphocytes (in vitro).
    Michałowicz J; Sicińska P
    Toxicol Lett; 2009 Dec; 191(2-3):246-52. PubMed ID: 19766705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potency, selectivity and cell cycle dependence of catechols in human tumour cells in vitro.
    Kable EP; Parsons PG
    Biochem Pharmacol; 1988 May; 37(9):1711-5. PubMed ID: 3132176
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catechol 1,2-dioxygenase from the Gram-positive Rhodococcus opacus 1CP: quantitative structure/activity relationship and the crystal structures of native enzyme and catechols adducts.
    Matera I; Ferraroni M; Kolomytseva M; Golovleva L; Scozzafava A; Briganti F
    J Struct Biol; 2010 Jun; 170(3):548-64. PubMed ID: 20040374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of free and various aminocarboxylic ligands sequestered copper(II) ions to Escherichia coli.
    Selvaraj S; Saha KC; Chakraborty A; Bhattacharyya SN; Saha A
    J Hazard Mater; 2009 Jul; 166(2-3):1403-9. PubMed ID: 19167164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure toxicity relationships for catechols in isolated rat hepatocytes.
    Moridani MY; Siraki A; Chevaldina T; Scobie H; O'Brien PJ
    Chem Biol Interact; 2004 Apr; 147(3):297-307. PubMed ID: 15135085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro estrogenicity of the catechol metabolites of selected polychlorinated biphenyls.
    Garner CE; Jefferson WN; Burka LT; Matthews HB; Newbold RR
    Toxicol Appl Pharmacol; 1999 Jan; 154(2):188-97. PubMed ID: 9925803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective toxicity of antimicrobial peptide S-thanatin on bacteria.
    Wu G; Wu H; Fan X; Zhao R; Li X; Wang S; Ma Y; Shen Z; Xi T
    Peptides; 2010 Sep; 31(9):1669-73. PubMed ID: 20600431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of peptidoglycan hydrolase activity in vivo and in vitro by energy uncouplers in Escherichia coli.
    Rodionov DG; Ishiguro EE
    Microb Drug Resist; 1996; 2(1):131-4. PubMed ID: 9158735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter.
    Zhao J; Wang Z; Dai Y; Xing B
    Water Res; 2013 Aug; 47(12):4169-78. PubMed ID: 23571112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.