These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11351444)

  • 1. Modeling acute toxicity of chemicals to Daphnia magna: a probabilistic neural network approach.
    Kaiser KL; Niculescu SP
    Environ Toxicol Chem; 2001 Feb; 20(2):420-31. PubMed ID: 11351444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probabilistic neural networks modeling of the 48-h LC50 acute toxicity endpoint to Daphnia magna.
    Niculescu SP; Lewis MA; Tigner J
    SAR QSAR Environ Res; 2008; 19(7-8):735-50. PubMed ID: 19061086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): a study based on 865 compounds.
    Kaiser KL; Niculescu SP
    Chemosphere; 1999 Jun; 38(14):3237-45. PubMed ID: 10390840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors.
    Kaiser KL; Niculescu SP; Schultz TW
    SAR QSAR Environ Res; 2002 Mar; 13(1):57-67. PubMed ID: 12074392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the toxicity of chemicals to Tetrahymena pyriformis using molecular fragment descriptors and probabilistic neural networks.
    Niculescu SP; Kaiser KL; Schultz TW
    Arch Environ Contam Toxicol; 2000 Oct; 39(3):289-98. PubMed ID: 10948278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP; Gupta S; Rai P
    Ecotoxicol Environ Saf; 2013 Sep; 95():221-33. PubMed ID: 23764236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches.
    Singh KP; Gupta S; Rai P
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):465-75. PubMed ID: 23856075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of quantitative interspecies toxicity relationship modeling of chemicals to fish.
    Fatemi MH; Mousa Shahroudi E; Amini Z
    J Theor Biol; 2015 Sep; 380():16-23. PubMed ID: 26002421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationship analysis of acute toxicity of diverse chemicals to Daphnia magna with whole molecule descriptors.
    Moosus M; Maran U
    SAR QSAR Environ Res; 2011 Oct; 22(7-8):757-74. PubMed ID: 21999753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint QSAR analysis using the Free-Wilson approach and quantum chemical parameters.
    Wei DB; Zhang AQ; Han SK; Wang LS
    SAR QSAR Environ Res; 2001; 12(5):471-9. PubMed ID: 11813812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of in silico models for prediction of Daphnia magna acute toxicity.
    Golbamaki A; Cassano A; Lombardo A; Moggio Y; Colafranceschi M; Benfenati E
    SAR QSAR Environ Res; 2014; 25(8):673-94. PubMed ID: 24911142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow.
    Niculescu SP; Atkinson A; Hammond G; Lewis M
    SAR QSAR Environ Res; 2004 Aug; 15(4):293-309. PubMed ID: 15370419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aquatic toxicity assessment of esters towards the Daphnia magna through PCA-ANFIS.
    Asadollahi-Baboli M
    Bull Environ Contam Toxicol; 2013 Oct; 91(4):450-4. PubMed ID: 23884170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of agricultural chemicals in Daphnia magna.
    Matsumoto K; Hosokawa M; Kuroda K; Endo G
    Osaka City Med J; 2009 Dec; 55(2):89-97. PubMed ID: 20088408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna.
    Reenu ; Vikas
    J Mol Graph Model; 2015 Sep; 61():89-101. PubMed ID: 26188798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous prediction of aqueous solubility and octanol/water partition coefficient based on descriptors derived from molecular structure.
    Livingstone DJ; Ford MG; Huuskonen JJ; Salt DW
    J Comput Aided Mol Des; 2001 Aug; 15(8):741-52. PubMed ID: 11718478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of probabilistic neural networks to classify the active compounds in medicinal plants.
    Xue CX; Zhang XY; Liu MC; Hu ZD; Fan BT
    J Pharm Biomed Anal; 2005 Jul; 38(3):497-507. PubMed ID: 15925251
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Toxic effects of 1,8-dihydroxyanthraquinone on Daphnia magna].
    Sun J; Huang L; Qiao X; Yang X; Chen J
    Ying Yong Sheng Tai Xue Bao; 2005 Jun; 16(6):1180-2. PubMed ID: 16180778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.