BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 11351511)

  • 1. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.
    Cai L; Tong M; Wang X; Kim H
    Environ Sci Technol; 2014 Jul; 48(13):7323-32. PubMed ID: 24911544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size.
    Kamrani S; Rezaei M; Kord M; Baalousha M
    Water Res; 2018 Apr; 133():338-347. PubMed ID: 28864305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upscaling of nanoparticle transport in porous media under unfavorable conditions: Pore scale to Darcy scale.
    Seetha N; Raoof A; Mohan Kumar MS; Majid Hassanizadeh S
    J Contam Hydrol; 2017 May; 200():1-14. PubMed ID: 28366612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of Biochar on Deposition and Release of Clay Colloids in Saturated Porous Media.
    Haque ME; Shen C; Li T; Chu H; Wang H; Li Z; Huang Y
    J Environ Qual; 2017 Nov; 46(6):1480-1488. PubMed ID: 29293838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloid transport in unsaturated porous media: the role of water content and ionic strength on particle straining.
    Torkzaban S; Bradford SA; van Genuchten MT; Walker SL
    J Contam Hydrol; 2008 Feb; 96(1-4):113-27. PubMed ID: 18068262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of bacteria on the transport and deposition of multi-walled carbon nanotubes in saturated porous media.
    Han P; Zhou D; Tong M; Kim H
    Environ Pollut; 2016 Jun; 213():895-903. PubMed ID: 27038577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquasols: on the role of secondary minima.
    Hahn MW; Abadzic D; O'Melia CR
    Environ Sci Technol; 2004 Nov; 38(22):5915-24. PubMed ID: 15573589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate and cotransport of Pb(II) and Cd(II) heavy ions with bentonite colloidal flow in saturated porous media: The role of filter cake, counter ions, colloid concentration, and fluid velocity.
    Movahedi H; Shaygan K; Bovet N; Schiefler AA; Jamshidi S
    J Hazard Mater; 2024 Mar; 466():133546. PubMed ID: 38271875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deposition of Cryptosporidium parvum oocysts in porous media: a synthesis of attachment efficiencies measured under varying environmental conditions.
    Park Y; Atwill ER; Hou L; Packman AI; Harter T
    Environ Sci Technol; 2012 Sep; 46(17):9491-500. PubMed ID: 22861686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of bentonite particles on representative gram negative and gram positive bacterial deposition in porous media.
    Yang H; Tong M; Kim H
    Environ Sci Technol; 2012 Nov; 46(21):11627-34. PubMed ID: 22970735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material.
    Adrian YF; Schneidewind U; Bradford SA; Simunek J; Fernandez-Steeger TM; Azzam R
    Environ Pollut; 2018 May; 236():195-207. PubMed ID: 29414340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transport of carboxyl-functionalized carbon black nanoparticles in saturated porous media: Column experiments and model analyses.
    Kang JK; Yi IG; Park JA; Kim SB; Kim H; Han Y; Kim PJ; Eom IC; Jo E
    J Contam Hydrol; 2015; 177-178():194-205. PubMed ID: 25977994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.
    Li H; Pereira TR; Teppen BJ; Laird DA; Johnston CT; Boyd SA
    Environ Sci Technol; 2007 Feb; 41(4):1251-6. PubMed ID: 17593727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Virus-sized colloid transport in a single pore: model development and sensitivity analysis.
    Seetha N; Mohan Kumar MS; Majid Hassanizadeh S; Raoof A
    J Contam Hydrol; 2014 Aug; 164():163-80. PubMed ID: 24992707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the effects of water velocity on TiO2 nanoparticles transport in saturated porous media.
    Toloni I; Lehmann F; Ackerer P
    J Contam Hydrol; 2014 Dec; 171():42-8. PubMed ID: 25461886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity.
    Torkzaban S; Bradford SA; Vanderzalm JL; Patterson BM; Harris B; Prommer H
    J Contam Hydrol; 2015 Oct; 181():161-71. PubMed ID: 26141344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TiO₂ nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions.
    Esfandyari Bayat A; Junin R; Derahman MN; Samad AA
    Chemosphere; 2015 Sep; 134():7-15. PubMed ID: 25889359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of carbon nanotubes on the transport and retention of bacteria in saturated porous media.
    Yang H; Tong M; Kim H
    Environ Sci Technol; 2013 Oct; 47(20):11537-44. PubMed ID: 24040844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Injection strategy for effective bacterial delivery in bioaugmentation scheme by controlling ionic strength and pore-water velocity.
    Kwak E; Kim JH; Choi JW; Lee S
    J Environ Manage; 2023 Feb; 328():116971. PubMed ID: 36516708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.