These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 11351511)

  • 41. Deposition and transport of Pseudomonas aeruginosa in porous media: lab-scale experiments and model analysis.
    Kwon KS; Kim SB; Choi NC; Kim DJ; Lee S; Lee SH; Choi JW
    Environ Technol; 2013; 34(17-20):2757-64. PubMed ID: 24527639
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adsorption and transport of polymaleic acid on Callovo-Oxfordian clay stone: batch and transport experiments.
    Durce D; Landesman C; Grambow B; Ribet S; Giffaut E
    J Contam Hydrol; 2014 Aug; 164():308-22. PubMed ID: 25041732
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Transport and deposition of CeO2 nanoparticles in water-saturated porous media.
    Li Z; Sahle-Demessie E; Hassan AA; Sorial GA
    Water Res; 2011 Oct; 45(15):4409-18. PubMed ID: 21708395
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of kaolinite colloids on Cd²⁺ transport through saturated sand under varying ionic strength conditions: Column experiments and modeling approaches.
    Wikiniyadhanee R; Chotpantarat S; Ong SK
    J Contam Hydrol; 2015 Nov; 182():146-56. PubMed ID: 26387033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport of ferrihydrite nanoparticles in saturated porous media: role of ionic strength and flow rate.
    Tosco T; Bosch J; Meckenstock RU; Sethi R
    Environ Sci Technol; 2012 Apr; 46(7):4008-15. PubMed ID: 22356610
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of particle size on copper oxychloride transport through saturated sand columns.
    Paradelo M; Pérez-Rodríguez P; Arias-Estévez M; López-Periago JE
    J Agric Food Chem; 2010 Jun; 58(11):6870-5. PubMed ID: 20465213
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deposition of protein-coated multi-walled carbon nanotubes on oxide surfaces and the retention in a silicon micromodel.
    Song J; Wang Q; Zeng Y; Liu Y; Jiang W
    J Hazard Mater; 2019 Aug; 375():107-114. PubMed ID: 31054527
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks.
    Wigger C; Van Loon LR
    J Contam Hydrol; 2018 Jun; 213():40-48. PubMed ID: 29776662
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.
    Cai L; Tong M; Ma H; Kim H
    Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of myo-inositol hexakisphosphate, ferrihydrite coating, ionic strength and pH on the transport of TiO
    Tang Y; Wang X; Yan Y; Zeng H; Wang G; Tan W; Liu F; Feng X
    Environ Pollut; 2019 Sep; 252(Pt B):1193-1201. PubMed ID: 31252117
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of temperature on graphene oxide deposition and transport in saturated porous media.
    Wang M; Gao B; Tang D; Sun H; Yin X; Yu C
    J Hazard Mater; 2017 Jun; 331():28-35. PubMed ID: 28242526
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Degradation and sorption of atrazine, hexazinone and procymidone in coastal sand aquifer media.
    Pang L; Close M; Flintoft M
    Pest Manag Sci; 2005 Feb; 61(2):133-43. PubMed ID: 15619714
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Alteration of the molecular-size-distribution of Boom Clay dissolved organic matter induced by Na(+) and Ca(2).
    Durce D; Maes N; Bruggeman C; Van Ravestyn L
    J Contam Hydrol; 2016; 185-186():14-27. PubMed ID: 26788872
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of biofilm on the transport and deposition behaviors of nano- and micro-plastic particles in quartz sand.
    He L; Rong H; Wu D; Li M; Wang C; Tong M
    Water Res; 2020 Jul; 178():115808. PubMed ID: 32371288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry.
    Torkzaban S; Kim HN; Simunek J; Bradford SA
    Environ Sci Technol; 2010 Mar; 44(5):1662-9. PubMed ID: 20136144
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media.
    Chen H; Gao B; Li H; Ma LQ
    J Contam Hydrol; 2011 Sep; 126(1-2):29-36. PubMed ID: 21775014
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport and deposition of functionalized CdTe nanoparticles in saturated porous media.
    Torkzaban S; Kim Y; Mulvihill M; Wan J; Tokunaga TK
    J Contam Hydrol; 2010 Nov; 118(3-4):208-17. PubMed ID: 21056917
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Altered transport of lindane caused by the retention of natural particles in saturated porous media.
    Ngueleu SK; Grathwohl P; Cirpka OA
    J Contam Hydrol; 2014 Jul; 162-163():47-63. PubMed ID: 24859485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transport and retention of Shewanella oneidensis strain MR1 in water-saturated porous media with different grain-surface properties.
    Ning Z; Li R; Lian K; Liao P; Liao H; Liu C
    Chemosphere; 2019 Oct; 233():57-66. PubMed ID: 31163309
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Colloid facilitated transport of strongly sorbing contaminants in natural porous media: mathematical modeling and laboratory column experiments.
    Grolimund D; Borkovec M
    Environ Sci Technol; 2005 Sep; 39(17):6378-86. PubMed ID: 16190190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.