These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 11351730)

  • 1. Evaluating competitive sorption mechanisms of volatile organic compounds in soils and sediments using polymers and zeolites.
    Li J; Werth CJ
    Environ Sci Technol; 2001 Feb; 35(3):568-74. PubMed ID: 11351730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slow desorption mechanisms of volatile organic chemical mixtures in soil and sediment micropores.
    Li J; Werth CJ
    Environ Sci Technol; 2004 Jan; 38(2):440-8. PubMed ID: 14750718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling sorption isotherms of volatile organic chemical mixtures in model and natural solids.
    Li J; Werth CJ
    Environ Toxicol Chem; 2002 Jul; 21(7):1377-83. PubMed ID: 12109736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorption of trichloroethylene in hydrophobic micropores of dealuminated Y zeolites and natural minerals.
    Cheng H; Reinhard M
    Environ Sci Technol; 2006 Dec; 40(24):7694-701. PubMed ID: 17256515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measuring hydrophobic micropore volumes in geosorbents from trichloroethylene desorption data.
    Cheng H; Reinhard M
    Environ Sci Technol; 2006 Jun; 40(11):3595-602. PubMed ID: 16786699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of TCE and PCE sorption and biodegradation parameters in a sandy aquifer for fate and transport modelling: batch and column studies.
    Kret E; Kiecak A; Malina G; Nijenhuis I; Postawa A
    Environ Sci Pollut Res Int; 2015 Jul; 22(13):9877-88. PubMed ID: 25647491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition for sorption and degradation of chlorinated ethenes in batch zero-valent iron systems.
    Dries J; Bastiaens L; Springael D; Agathos SN; Diels L
    Environ Sci Technol; 2004 May; 38(10):2879-84. PubMed ID: 15212263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of competitor and natural organic matter characteristics on the equilibrium sorption of 1,2-dichlorobenzene in soil and shale.
    Ju D; Young TM
    Environ Sci Technol; 2004 Nov; 38(22):5863-70. PubMed ID: 15573583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sorption of chlorinated solvents and degradation products on natural clayey tills.
    Lu C; Bjerg PL; Zhang F; Broholm MM
    Chemosphere; 2011 Jun; 83(11):1467-74. PubMed ID: 21459403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling trichloroethylene adsorption by activated carbon preloaded with natural dissolved organic matter using a modified IAST approach.
    Wigton A; Kilduff JE
    Environ Sci Technol; 2004 Nov; 38(22):5825-33. PubMed ID: 15573579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter.
    Quinlivan PA; Li L; Knappe DR
    Water Res; 2005 Apr; 39(8):1663-73. PubMed ID: 15878039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption mechanisms of chlorinated hydrocarbons on biochar produced from different feedstocks: Conclusions from single- and bi-solute experiments.
    Schreiter IJ; Schmidt W; Schüth C
    Chemosphere; 2018 Jul; 203():34-43. PubMed ID: 29605747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Equilibrium partitioning of chlorinated solvents in the vadose zone: low f(oc) geomedia.
    Silva JA; Bruant RG; Conklin MH; Corley TL
    Environ Sci Technol; 2002 Apr; 36(7):1613-9. PubMed ID: 12004787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-line gas chromatographic apparatus for measuring the hydrophobic micropore volume (HMV) and contaminant transformation in mineral micropores.
    Cheng H; Reinhard M
    J Hazard Mater; 2010 Jul; 179(1-3):596-603. PubMed ID: 20388581
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the effects of concentration history on the slow desorption of trichloroethene from a soil at 100% relative humidity.
    Werth CJ; Hansen KM
    J Contam Hydrol; 2002 Feb; 54(3-4):307-27. PubMed ID: 11900330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter.
    Zhang M; He F; Zhao D; Hao X
    Water Res; 2011 Mar; 45(7):2401-14. PubMed ID: 21376362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small subsurface ion mobility spectrometer sensor for detecting environmental soil-gas contaminants.
    Kanu AB; Hill HH; Gribb MM; Walters RN
    J Environ Monit; 2007 Jan; 9(1):51-60. PubMed ID: 17213942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conditioning-annealing studies of natural organic matter solids linking irreversible sorption to irreversible structural expansion.
    Sander M; Lu Y; Pignatello JJ
    Environ Sci Technol; 2006 Jan; 40(1):170-8. PubMed ID: 16433348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced sorption of trichloroethene by smectite clay exchanged with Cs+.
    Aggarwal V; Li H; Boyd SA; Teppen BJ
    Environ Sci Technol; 2006 Feb; 40(3):894-9. PubMed ID: 16509334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of the physiochemical properties of chlorinated solvents on the sorption of trichloroethylene to the roots of Typha latifolia.
    Ma X; Wang C
    Environ Pollut; 2009 Mar; 157(3):1019-23. PubMed ID: 19013701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.