BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 11351740)

  • 1. Recovery of zinc(II) from HCl spent pickling solutions by solvent extraction.
    Regel M; Sastre AM; Szymanowski J
    Environ Sci Technol; 2001 Feb; 35(3):630-5. PubMed ID: 11351740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction.
    Mansur MB; Rocha SD; Magalhães FS; Benedetto Jdos S
    J Hazard Mater; 2008 Feb; 150(3):669-78. PubMed ID: 17570579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a combined pyro- and hydro-metallurgical route to treat spent zinc-carbon batteries.
    Baba AA; Adekola AF; Bale RB
    J Hazard Mater; 2009 Nov; 171(1-3):838-44. PubMed ID: 19596514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A review on methods of recovery of acid(s) from spent pickle liquor of steel industry.
    Ghare NY; Wani KS; Patil VS
    J Environ Sci Eng; 2013 Apr; 55(2):253-66. PubMed ID: 25464702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD). Part II: Downstream processing and zinc recovery by electrowinning.
    Tsakiridis PE; Oustadakis P; Katsiapi A; Agatzini-Leonardou S
    J Hazard Mater; 2010 Jul; 179(1-3):8-14. PubMed ID: 20434263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-Up of Membrane-Based Zinc Recovery from Spent Pickling Acids of Hot-Dip Galvanizing.
    Arguillarena A; Margallo M; Arruti-Fernández A; Pinedo J; Gómez P; Urtiaga A
    Membranes (Basel); 2020 Dec; 10(12):. PubMed ID: 33561072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leaching and separation of zinc from the black paste of spent MnO2-Zn dry cell batteries.
    El-Nadi YA; Daoud JA; Aly HF
    J Hazard Mater; 2007 May; 143(1-2):328-34. PubMed ID: 17049161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvent extraction applied to the recovery of heavy metals from galvanic sludge.
    Silva JE; Paiva AP; Soares D; Labrincha A; Castro F
    J Hazard Mater; 2005 Apr; 120(1-3):113-8. PubMed ID: 15811671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent extraction separation of copper and zinc from MSWI fly ash leachates.
    Tang J; Steenari BM
    Waste Manag; 2015 Oct; 44():147-54. PubMed ID: 26227183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Separation of iron(iii), zinc(ii) and lead(ii) from a choline chloride-ethylene glycol deep eutectic solvent by solvent extraction.
    Spathariotis S; Peeters N; Ryder KS; Abbott AP; Binnemans K; Riaño S
    RSC Adv; 2020 Sep; 10(55):33161-33170. PubMed ID: 35515064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction and separation of Pd(II), Pt(IV), Fe(III), Zn(II), Cu(II) and Ag(I) from hydrochloric acid solutions with selected cyanamides as novel extractants.
    Mowafy EA; Aly HF
    J Hazard Mater; 2007 Oct; 149(2):465-70. PubMed ID: 17499916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular economy in hot-dip galvanizing with zinc and iron recovery from spent pickling acids.
    Arguillarena A; Margallo M; Arruti-Fernández A; Pinedo J; Gómez P; Ortiz I; Urtiaga A
    RSC Adv; 2023 Feb; 13(10):6481-6489. PubMed ID: 36845587
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of manganese and zinc from waste Zn-C cell powder: Mutual separation of Mn(II) and Zn(II) from leach liquor by solvent extraction technique.
    Biswas RK; Habib MA; Karmakar AK; Tanzin S
    Waste Manag; 2016 May; 51():149-156. PubMed ID: 26456667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using tributhylphosphate as carrier.
    Kumbasar RA
    J Hazard Mater; 2010 Jun; 178(1-3):875-82. PubMed ID: 20227829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle assessment of zinc and iron recovery from spent pickling acids by membrane-based solvent extraction and electrowinning.
    Arguillarena A; Margallo M; Irabien Á; Urtiaga A
    J Environ Manage; 2022 Sep; 318():115567. PubMed ID: 35759966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Minimizing the creation of spent pickling liquors in a pickling process with high-concentration hydrochloric acid solutions: mechanism and evaluation method.
    Tang B; Su W; Wang J; Fu F; Yu G; Zhang J
    J Environ Manage; 2012 May; 98():147-54. PubMed ID: 22266479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery and separation of sulfuric acid and iron from dilute acidic sulfate effluent and waste sulfuric acid by solvent extraction and stripping.
    Qifeng W; Xiulian R; Jingjing G; Yongxing C
    J Hazard Mater; 2016 Mar; 304():1-9. PubMed ID: 26546698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extraction of gold(III) from hydrochloric acid solutions by CTAB/n-heptane/iso-amyl alcohol/Na2SO3 microemulsion.
    Lu W; Lu Y; Liu F; Shang K; Wang W; Yang Y
    J Hazard Mater; 2011 Feb; 186(2-3):2166-70. PubMed ID: 21236565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent Extraction with Cyanex 923 to Remove Arsenic(V) from Solutions.
    Alguacil FJ; Escudero E; Robla JI
    Molecules; 2024 Jan; 29(2):. PubMed ID: 38257383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient recovery of molybdenum from spent catalyst by an optimized process.
    Zhang M; Song H; Zheng C; Lin Z; Liu Y; Wu W; Gao X
    J Air Waste Manag Assoc; 2020 Oct; 70(10):971-979. PubMed ID: 32633619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.