These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 11351757)
21. The use of Aleppo pine needles as a bio-monitor of heavy metals in the atmosphere. Al-Alawi MM; Mandiwana KL J Hazard Mater; 2007 Sep; 148(1-2):43-6. PubMed ID: 17363145 [TBL] [Abstract][Full Text] [Related]
22. Metal contamination in the lichen Alectoria sarmentosa near the copper smelter of Murdochville, Québec. Aznar JC; Richer-Laflèche M; Cluis D Environ Pollut; 2008 Nov; 156(1):76-81. PubMed ID: 18289751 [TBL] [Abstract][Full Text] [Related]
23. Decomposer animal communities in forest soil along heavy metal pollution gradient. Haimi J; Siira-Pietikäinen A Anal Bioanal Chem; 1996 Mar; 354(5-6):672-5. PubMed ID: 15067469 [TBL] [Abstract][Full Text] [Related]
24. Patterns of understory diversity in mixed coniferous forests of southern California impacted by air pollution. Allen EB; Temple PJ; Bytnerowicz A; Arbaugh MJ; Sirulnik AG; Rao LE ScientificWorldJournal; 2007 Mar; 7 Suppl 1():247-63. PubMed ID: 17450303 [TBL] [Abstract][Full Text] [Related]
25. Trees as bioindicator of heavy metal pollution in three European cities. Sawidis T; Breuste J; Mitrovic M; Pavlovic P; Tsigaridas K Environ Pollut; 2011 Dec; 159(12):3560-70. PubMed ID: 21907471 [TBL] [Abstract][Full Text] [Related]
26. Element accumulation in boreal bryophytes, lichens and vascular plants exposed to heavy metal and sulfur deposition in Finland. Salemaa M; Derome J; Helmisaari HS; Nieminen T; Vanha-Majamaa I Sci Total Environ; 2004 May; 324(1-3):141-60. PubMed ID: 15081702 [TBL] [Abstract][Full Text] [Related]
27. Use of sequential extraction to assess metal partitioning in soils. Kaasalainen M; Yli-Halla M Environ Pollut; 2003; 126(2):225-33. PubMed ID: 12927493 [TBL] [Abstract][Full Text] [Related]
29. Immobilization of heavy metals during aquatic and terrestrial litter decomposition in an alpine forest. Yue K; Yang W; Tan B; Peng Y; Huang C; Xu Z; Ni X; Yang Y; Zhou W; Zhang L; Wu F Chemosphere; 2019 Feb; 216():419-427. PubMed ID: 30384312 [TBL] [Abstract][Full Text] [Related]
30. Mass-loss rates from decomposition of plant residues in spruce forests near the northern tree line subject to strong air pollution. Lukina NV; Orlova MA; Steinnes E; Artemkina NA; Gorbacheva TT; Smirnov VE; Belova EA Environ Sci Pollut Res Int; 2017 Aug; 24(24):19874-19887. PubMed ID: 28687995 [TBL] [Abstract][Full Text] [Related]
31. Model for the study of the impact of atmospheric heavy metals on soil microbial biomass. Marchionni M; Benedetti A; Riccardi C; Villarini M Ann Chim; 2000; 90(11-12):715-21. PubMed ID: 11218259 [TBL] [Abstract][Full Text] [Related]
32. [The response of forest ecosystems to reduction in industrial atmospheric emission in the Kola Subarctic]. Koptsik GN; Koptsik SV; Smirnova IE; Kudryavtseva AD; Turbabina KA Zh Obshch Biol; 2016; 77(2):145-63. PubMed ID: 27266019 [TBL] [Abstract][Full Text] [Related]
33. Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests. Pennanen T; Frostegard A; Fritze H; Baath E Appl Environ Microbiol; 1996 Feb; 62(2):420-8. PubMed ID: 16535230 [TBL] [Abstract][Full Text] [Related]
34. Nutrient retranslocation in the foliage of Pinus sylvestris L. growing along a heavy metal pollution gradient. Nieminen T; Helmisaari HS Tree Physiol; 1996 Oct; 16(10):825-31. PubMed ID: 14871672 [TBL] [Abstract][Full Text] [Related]
35. Trace Element Concentrations in Tree Leaves and Lichen Collected Along a Metal Pollution Gradient Near Olkusz (Southern Poland). Zakrzewska M; Klimek B Bull Environ Contam Toxicol; 2018 Feb; 100(2):245-249. PubMed ID: 29181606 [TBL] [Abstract][Full Text] [Related]
36. Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest. Rousk J; Rousk K Environ Pollut; 2018 Sep; 240():297-305. PubMed ID: 29747113 [TBL] [Abstract][Full Text] [Related]
37. Sulphur dioxide adsorption in Scots pine canopies exposed to high ammonia emissions near a Cu-Ni smelter in SW Finland. Derome J; Nieminen T; Saarsalmi A Environ Pollut; 2004 May; 129(1):79-88. PubMed ID: 14749072 [TBL] [Abstract][Full Text] [Related]
38. Levels of selected trace elements in Scots pine (Pinus sylvestris L.), silver birch (Betula pendula L.), and Norway maple (Acer platanoides L.) in an urbanized environment. Kosiorek M; Modrzewska B; Wyszkowski M Environ Monit Assess; 2016 Oct; 188(10):598. PubMed ID: 27696092 [TBL] [Abstract][Full Text] [Related]
39. Modeling and evaluation of urban pollution events of atmospheric heavy metals from a large Cu-smelter. Chen B; Stein AF; Castell N; Gonzalez-Castanedo Y; Sanchez de la Campa AM; de la Rosa JD Sci Total Environ; 2016 Jan; 539():17-25. PubMed ID: 26352643 [TBL] [Abstract][Full Text] [Related]
40. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota. Gubelit Y; Polyak Y; Dembska G; Pazikowska-Sapota G; Zegarowski L; Kochura D; Krivorotov D; Podgornaya E; Burova O; Maazouzi C Sci Total Environ; 2016 Apr; 550():806-819. PubMed ID: 26849344 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]