These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 11352107)

  • 1. Roles of lactate and catecholamines in the energetics of brief locomotion in an ectothermic vertebrate.
    Nedrow JM; Scholnick DA; Gleeson TT
    J Comp Physiol B; 2001 Apr; 171(3):237-45. PubMed ID: 11352107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activity before exercise influences recovery metabolism in the lizard Dipsosaurus dorsalis.
    Scholnick DA; Gleeson TT
    J Exp Biol; 2000 Jun; 203(Pt 12):1809-15. PubMed ID: 10821738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions to elevated metabolism during recovery: dissecting the excess postexercise oxygen consumption (EPOC) in the desert iguana (Dipsosaurus dorsalis).
    Hancock TV; Gleeson TT
    Physiol Biochem Zool; 2008; 81(1):1-13. PubMed ID: 18040968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EPOC and the energetics of brief locomotor activity in Mus domesticus.
    Baker EJ; Gleeson TT
    J Exp Zool; 1998 Feb; 280(2):114-20. PubMed ID: 9433798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of activity duration on recovery and metabolic costs in the desert iguana (Dipsosaurus dorsalis).
    Hancock TV; Adolph SC; Gleeson TT
    Comp Biochem Physiol A Mol Integr Physiol; 2001 Aug; 130(1):67-79. PubMed ID: 11672684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of intensity on the energetics of brief locomotor activity.
    Baker EJ; Gleeson TT
    J Exp Biol; 1999 Nov; 202(Pt 22):3081-7. PubMed ID: 10539956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling the duration of activity relative to body mass results in similar locomotor performance and metabolic costs in lizards.
    Donovan ER; Gleeson TT
    J Exp Biol; 2008 Oct; 211(Pt 20):3258-65. PubMed ID: 18840659
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of beta-adrenoceptor blockade on post-exercise oxygen consumption.
    Børsheim E; Bahr R; Hansson P; Gullestad L; Hallén J; Sejersted OM
    Metabolism; 1994 May; 43(5):565-71. PubMed ID: 7909912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adrenergic control of post-exercise metabolism.
    Børsheim E; Knardahl S; Høstmark AT; Bahr R
    Acta Physiol Scand; 1998 Mar; 162(3):313-23. PubMed ID: 9578377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of moderate exercise on excess post-exercise oxygen consumption and catecholamines in young women.
    Imamura H; Shibuya S; Uchida K; Teshima K; Masuda R; Miyamoto N
    J Sports Med Phys Fitness; 2004 Mar; 44(1):23-9. PubMed ID: 15181386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of beta-adrenoceptor blockade on postexercise oxygen consumption and triglyceride/fatty acid cycling.
    Børsheim E; Bahr R; Høstmark AT; Knardahl S
    Metabolism; 1998 Apr; 47(4):439-48. PubMed ID: 9550543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittent locomotor activity that increases endurance also increases metabolic costs in the desert Iguana (Dipsosaurus dorsalis).
    Hancock TV; Gleeson TT
    Physiol Biochem Zool; 2005; 78(2):163-72. PubMed ID: 15778936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic bases of excess post-exercise oxygen consumption: a review.
    Gaesser GA; Brooks GA
    Med Sci Sports Exerc; 1984; 16(1):29-43. PubMed ID: 6369064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of exercise intensity and duration on the excess post-exercise oxygen consumption.
    LaForgia J; Withers RT; Gore CJ
    J Sports Sci; 2006 Dec; 24(12):1247-64. PubMed ID: 17101527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can energetic expenditure be minimized by performing activity intermittently?
    Edwards EB; Gleeson TT
    J Exp Biol; 2001 Feb; 204(Pt 3):599-605. PubMed ID: 11171310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal dependence of endurance and locomotory energetics in a lizard.
    John-Alder HB; Bennett AF
    Am J Physiol; 1981 Nov; 241(5):R342-9. PubMed ID: 7304779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excess postexercise oxygen consumption decreases with swimming duration in a labriform fish: Integrating aerobic and anaerobic metabolism across time.
    Cordero GA; Methling C; Tirsgaard B; Steffensen JF; Domenici P; Svendsen JC
    J Exp Zool A Ecol Integr Physiol; 2019 Dec; 331(10):577-586. PubMed ID: 31692282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postexercise thermoregulatory behavior and recovery from exercise in desert iguanas.
    Wagner EL; Gleeson TT
    Physiol Behav; 1997 Feb; 61(2):175-80. PubMed ID: 9035245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excess postexercise oxygen consumption and recovery rate in trained and untrained subjects.
    Short KR; Sedlock DA
    J Appl Physiol (1985); 1997 Jul; 83(1):153-9. PubMed ID: 9216958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of corticosterone and glucagon on metabolic recovery from exhaustive exercise in the desert iguana Dipsosaurus dorsalis.
    Scholnick DA; Weinstein RB; Gleeson TT
    Gen Comp Endocrinol; 1997 May; 106(2):147-54. PubMed ID: 9169110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.