These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11352726)

  • 1. Pressure-induced perturbation on the active site of beta-amylase monitored from the sulfhydryl reaction.
    Tanaka N; Mitani D; Kunugi S
    Biochemistry; 2001 May; 40(20):5914-20. PubMed ID: 11352726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of guanidine hydrochloride and high pressure on subsite flexibility of beta-amylase.
    Tanaka N; Kajimoto S; Mitani D; Kunugi S
    Biochim Biophys Acta; 2002 Apr; 1596(2):318-25. PubMed ID: 12007611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cysteine residues in 4-oxalomesaconate hydratase from Pseudomonas ochraceae NGJ1.
    Li S; Kimura M; Takashima T; Hayashi K; Inoue K; Ishiguro R; Sugisaki H; Maruyama K
    Biosci Biotechnol Biochem; 2007 Feb; 71(2):449-57. PubMed ID: 17284837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cysteine residues on the activity of arginyl-tRNA synthetase from Escherichia coli.
    Liu M; Huang Y; Wu J; Wang E; Wang Y
    Biochemistry; 1999 Aug; 38(34):11006-11. PubMed ID: 10460155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intestinal fatty acid binding protein: characterization of mutant proteins containing inserted cysteine residues.
    Jiang N; Frieden C
    Biochemistry; 1993 Oct; 32(41):11015-21. PubMed ID: 8218166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unfolding rates of barstar determined in native and low denaturant conditions indicate the presence of intermediates.
    Sridevi K; Udgaonkar JB
    Biochemistry; 2002 Feb; 41(5):1568-78. PubMed ID: 11814350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization, molecular replacement solution, and refinement of tetrameric beta-amylase from sweet potato.
    Cheong CG; Eom SH; Chang C; Shin DH; Song HK; Min K; Moon JH; Kim KK; Hwang KY; Suh SW
    Proteins; 1995 Feb; 21(2):105-17. PubMed ID: 7777485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on regulatory functions of malic enzymes. VII. Structural and functional characteristics of sulfhydryl groups in NADP-linked malic enzyme from Escherichia coli W.
    Iwakura M; Tokushige M; Katsuki H
    J Biochem; 1979 Nov; 86(5):1239-49. PubMed ID: 42642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of barstar by chemical modification of the buried cysteines.
    Ramachandran S; Udgaonkar JB
    Biochemistry; 1996 Jul; 35(26):8776-85. PubMed ID: 8679642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfhydryls of tubulin. A probe to detect conformational changes of tubulin.
    Roychowdhury M; Sarkar N; Manna T; Bhattacharyya S; Sarkar T; Basusarkar P; Roy S; Bhattacharyya B
    Eur J Biochem; 2000 Jun; 267(12):3469-76. PubMed ID: 10848962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional roles of cysteine residues of Bacillus polymyxa beta-amylase.
    Uozumi N; Matsuda T; Tsukagoshi N; Udaka S
    Biochemistry; 1991 May; 30(18):4594-9. PubMed ID: 1827035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The kinetic study of arginine kinase from the sea cucumber Stichopus japonicus with 5,5'-dithiobis-(2-nitrobenzoic acid).
    Feng Z; Qin G; Xicheng W
    Int J Biol Macromol; 2005 Aug; 36(3):184-90. PubMed ID: 16038973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Essential cysteines in 3-deoxy-D-manno-octulosonic acid 8-phosphate synthase from Escherichia coli: analysis by chemical modification and site-directed mutagenesis.
    Salleh HM; Patel MA; Woodard RW
    Biochemistry; 1996 Jul; 35(27):8942-7. PubMed ID: 8688430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dependence of reaction rate of 5,5'-dithiobis-(2-nitrobenzoic acid) to free sulfhydryl groups of bovine serum albumin and ovalbumin on the protein conformations.
    Takeda K; Shigemura A; Hamada S; Gu W; Fang D; Sasa K; Hachiya K
    J Protein Chem; 1992 Apr; 11(2):187-92. PubMed ID: 1388666
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of SH and S-S groups in Bacillus cereus beta-amylase.
    Nomura K; Yoneda I; Nanmori T; Shinke R; Morita Y; Mikami B
    J Biochem; 1995 Dec; 118(6):1124-30. PubMed ID: 8720125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbation of microtubule polymerization by quercetin through tubulin binding: a novel mechanism of its antiproliferative activity.
    Gupta K; Panda D
    Biochemistry; 2002 Oct; 41(43):13029-38. PubMed ID: 12390030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Residues essential for catalytic activity of soybean beta-amylase.
    Totsuka A; Nong VH; Kadokawa H; Kim CS; Itoh Y; Fukazawa C
    Eur J Biochem; 1994 Apr; 221(2):649-54. PubMed ID: 8174545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of activation of protein phosphatase 1 on sulfhydryl reactivity.
    Chu Y; Lee EY; Reimann EM; Wilson SE; Schlender KK
    Arch Biochem Biophys; 1996 Oct; 334(1):83-8. PubMed ID: 8837742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway.
    Mu H; Zhou SM; Yang JM; Meng FG; Park YD
    Int J Biol Macromol; 2007 Oct; 41(4):439-46. PubMed ID: 17673285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-jump studies of the folding/unfolding of trp repressor.
    Desai G; Panick G; Zein M; Winter R; Royer CA
    J Mol Biol; 1999 May; 288(3):461-75. PubMed ID: 10329154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.