BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 11352737)

  • 1. Mitochondrial creatine kinase binding to phospholipids decreases fluidity of membranes and promotes new lipid-induced beta structures as monitored by red edge excitation shift, laurdan fluorescence, and FTIR.
    Granjon T; Vacheron MJ; Vial C; Buchet R
    Biochemistry; 2001 May; 40(20):6016-26. PubMed ID: 11352737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acyl chain composition determines cardiolipin clustering induced by mitochondrial creatine kinase binding to monolayers.
    Maniti O; Cheniour M; Lecompte MF; Marcillat O; Buchet R; Vial C; Granjon T
    Biochim Biophys Acta; 2011 Apr; 1808(4):1129-39. PubMed ID: 21256109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mg-nucleotides induced dissociation of liposome-bound creatine kinase: reversible changes in its secondary structure and in the fluidity of the bilayer.
    Granjon T; Vacheron MJ; Buchet R; Vial C
    Mol Membr Biol; 2003; 20(2):163-9. PubMed ID: 12851072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of proteolipid domain formation in an inner mitochondrial membrane mimicking model.
    Cheniour M; Brewer J; Bagatolli L; Marcillat O; Granjon T
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt A):969-976. PubMed ID: 28185927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study.
    Bagatolli LA; Gratton E
    Biophys J; 2000 Jul; 79(1):434-47. PubMed ID: 10866969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. C-terminal lysines determine phospholipid interaction of sarcomeric mitochondrial creatine kinase.
    Schlattner U; Gehring F; Vernoux N; Tokarska-Schlattner M; Neumann D; Marcillat O; Vial C; Wallimann T
    J Biol Chem; 2004 Jun; 279(23):24334-42. PubMed ID: 15044463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disclosure of discrete sites for phospholipid and sterols at the protein-lipid interface in native acetylcholine receptor-rich membrane.
    Antollini SS; Barrantes FJ
    Biochemistry; 1998 Nov; 37(47):16653-62. PubMed ID: 9843433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of laurdan fluorescence intensity and polarization to distinguish between changes in membrane fluidity and phospholipid order.
    Harris FM; Best KB; Bell JD
    Biochim Biophys Acta; 2002 Sep; 1565(1):123-8. PubMed ID: 12225860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model for the interaction of 6-lauroyl-2-(N,N-dimethylamino)naphthalene with lipid environments: implications for spectral properties.
    Bagatolli LA; Parasassi T; Fidelio GD; Gratton E
    Photochem Photobiol; 1999 Oct; 70(4):557-64. PubMed ID: 10546552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disorder Amidst Membrane Order: Standardizing Laurdan Generalized Polarization and Membrane Fluidity Terms.
    Jay AG; Hamilton JA
    J Fluoresc; 2017 Jan; 27(1):243-249. PubMed ID: 27738919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The new fluorescent membrane probe Ahba: a comparative study with the largely used Laurdan.
    Vequi-Suplicy CC; Lamy MT; Marquezin CA
    J Fluoresc; 2013 May; 23(3):479-86. PubMed ID: 23397490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Origin of laurdan sensitivity to the vesicle-to-micelle transition of phospholipid-octylglucoside system: a time-resolved fluorescence study.
    Viard M; Gallay J; Vincent M; Paternostre M
    Biophys J; 2001 Jan; 80(1):347-59. PubMed ID: 11159407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipid phase transitions in homogeneous nanometer scale bilayer discs.
    Shaw AW; McLean MA; Sligar SG
    FEBS Lett; 2004 Jan; 556(1-3):260-4. PubMed ID: 14706860
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol modifies water concentration and dynamics in phospholipid bilayers: a fluorescence study using Laurdan probe.
    Parasassi T; Di Stefano M; Loiero M; Ravagnan G; Gratton E
    Biophys J; 1994 Mar; 66(3 Pt 1):763-8. PubMed ID: 8011908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluorescence properties of Laurdan in cochleate phases.
    Ramani K; Balasubramanian SV
    Biochim Biophys Acta; 2003 Dec; 1618(1):67-78. PubMed ID: 14643935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-gated total internal reflection fluorescence spectroscopy (TG-TIRFS): application to the membrane marker laurdan.
    Schneckenburger H; Stock K; Strauss WS; Eickholz J; Sailer R
    J Microsc; 2003 Jul; 211(Pt 1):30-6. PubMed ID: 12839548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-protein interactions in rat renal subcellular membranes: a biophysical and biochemical study.
    D'Antuono C; Fernández-Tomé MC; Sterin-Speziale N; Bernik DL
    Arch Biochem Biophys; 2000 Oct; 382(1):39-47. PubMed ID: 11051095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial creatine kinase interaction with heterogeneous monolayers: Effect on lipid lateral organization.
    Vernoux N; Maniti O; Marcillat O; Vial C; Granjon T
    Biochimie; 2009 Jun; 91(6):752-64. PubMed ID: 19341780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluorometry of cell membrane dynamics.
    Weber P; Wagner M; Schneckenburger H
    Cytometry A; 2006 Mar; 69(3):185-8. PubMed ID: 16479611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.