These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 11352807)

  • 1. alpha(1)-Adrenoceptor-induced Mg2+ extrusion from rat hepatocytes occurs via Na(+)-dependent transport mechanism.
    Fagan TE; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2001 Jun; 280(6):G1145-56. PubMed ID: 11352807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of glucose in modulating Mg2+ homeostasis in liver cells from starved rats.
    Torres LM; Youngner J; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2005 Feb; 288(2):G195-206. PubMed ID: 15647605
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of Na(+)- and Ca(2+)-dependent Mg(2+) extrusion by alpha(1)- and beta-adrenergic agonists in rat liver cells.
    Fagan TE; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2000 Nov; 279(5):G943-50. PubMed ID: 11052991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. alpha(1)-Agonists-induced Mg(2+) efflux is related to MAP kinase activation in the heart.
    Kim SJ; Kang HS; Kang MS; Yu X; Park SY; Kim IS; Kim NS; Kim SZ; Kwak YG; Kim JS
    Biochem Biophys Res Commun; 2005 Aug; 333(4):1132-8. PubMed ID: 15975551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular Mg2+ movement during muscarinic stimulation. Mg2+ uptake by the intracellular Ca2+ store in rat sublingual mucous acini.
    Zhang GH; Melvin JE
    J Biol Chem; 1994 Apr; 269(14):10352-6. PubMed ID: 8144616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mg2+-malate co-transport, a mechanism for Na+-independent Mg2+ transport in neurons of the leech Hirudo medicinalis.
    Günzel D; Hintz K; Durry S; Schlue WR
    J Neurophysiol; 2005 Jul; 94(1):441-53. PubMed ID: 15788520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormonal stimulation of Mg2+ uptake in hepatocytes. Regulation by plasma membrane and intracellular organelles.
    Romani A; Marfella C; Scarpa A
    J Biol Chem; 1993 Jul; 268(21):15489-95. PubMed ID: 8340377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional characterization of two distinct Mg(2+) extrusion mechanisms in cardiac sarcolemmal vesicles.
    Cefaratti C; Romani AM
    Mol Cell Biochem; 2007 Sep; 303(1-2):63-72. PubMed ID: 17415622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amplification of alpha 1D-adrenoceptor mediated contractions in rat aortic rings partially depolarised with KCl.
    Lyles GA; Birrell C; Banchelli G; Pirisino R
    Pharmacol Res; 1998 Jun; 37(6):437-54. PubMed ID: 9695117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of magnesium uptake and release in the heart and in isolated ventricular myocytes.
    Romani A; Marfella C; Scarpa A
    Circ Res; 1993 Jun; 72(6):1139-48. PubMed ID: 8495544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mg2+ release coupled to Ca2+ uptake: a novel Ca 2+ accumulation mechanism in rat liver.
    Cefaratti C
    Mol Cell Biochem; 2007 Jan; 295(1-2):241-7. PubMed ID: 16845488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of the role of Ca2+ mobilization from intracellular pool(s), using dantrolene, in the glycogenolytic action of alpha-adrenergic stimulation in perfused rat liver.
    Mine T; Kojima I; Kimura S; Ogata E
    Biochim Biophys Acta; 1987 Feb; 927(2):229-34. PubMed ID: 3028492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptozotocin-induced diabetes impairs Mg2+ homeostasis and uptake in rat liver cells.
    Fagan TE; Cefaratti C; Romani A
    Am J Physiol Endocrinol Metab; 2004 Feb; 286(2):E184-93. PubMed ID: 14701664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Delayed restoration of Mg2+ content and transport in liver cells following ethanol withdrawal.
    Torres LM; Cefaratti C; Berti-Mattera L; Romani A
    Am J Physiol Gastrointest Liver Physiol; 2009 Oct; 297(4):G621-31. PubMed ID: 19556361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravesicular glucose modulates magnesium2+ transport in liver plasma membrane from streptozotocin-treated rats.
    Cefaratti C; Romani A
    Metabolism; 2003 Nov; 52(11):1464-70. PubMed ID: 14624408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of two Mg2+ transporters in sealed plasma membrane vesicles from rat liver.
    Cefaratti C; Romani A; Scarpa A
    Am J Physiol; 1998 Oct; 275(4):C995-C1008. PubMed ID: 9755053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium and the endothelin-1 and alpha 1-adrenergic stimulated phosphatidylinositol cycle in cultured rat cardiomyocytes.
    van Heugten HA; de Jonge HW; Bezstarosti K; Lamers JM
    J Mol Cell Cardiol; 1994 Aug; 26(8):1081-93. PubMed ID: 7528283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of repeated doses of ethanol on hepatic Mg2+ homeostasis and mobilization.
    Young A; Berti-Mattera L; Romani A
    Alcohol Clin Exp Res; 2007 Jul; 31(7):1240-51. PubMed ID: 17577394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased voltage-dependent calcium influx produced by alpha 1B-adrenergic receptor activation in rat medullary thyroid carcinoma 6-23 cells.
    Esbenshade TA; Theroux TL; Minneman KP
    Mol Pharmacol; 1994 Apr; 45(4):591-8. PubMed ID: 8183237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Receptor subtype and intracellular signal transduction pathway associated with situs inversus induced by alpha 1 adrenergic stimulation in rat embryos.
    Fujinaga M; Hoffman BB; Baden JM
    Dev Biol; 1994 Apr; 162(2):558-67. PubMed ID: 8150214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.